Processing Math: 4%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 1 and 15 (spanning 14 versions)
Revision 1 as of 2018-04-03 21:36:40
Size: 1428
Comment:
Revision 15 as of 2018-04-07 07:25:32
Size: 2507
Comment:
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:
The Earth's equatorial bulge causes orbits to drift, with westward orbit perigee and apogee drifting westward. From AE Roy ''Orbital Motion '' 1978: The Earth's equatorial bulge causes orbits (perigee and apogee) to drift westward. From AE Roy ''Orbital Motion '' 1978:
Line 8: Line 8:
|| $ a_0 $ || semimajor axis || || $ a $   || semimajor axis ||
Line 12: Line 12:
|| $ J_2 $ || zonal ablateness factor                        || || $ J_2 $ || zonal ablateness factor, 1.08262668e-3 for Earth ||
Line 17: Line 17:
|| $ T $ || unperturbed orbital period ||
Line 21: Line 21:
$ \bar{n} ~=~ n_0 \left[ 1 + { \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } \left( 1 - {\large { 3 \over 2 } } \sin( i )^2 \right) (1-e^2)^{1/2} \right] $ $ n_0 ~ \approx \large ( { 2 \pi } \over T $
Line 23: Line 23:
$ { \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) $ $ \bar{n} ~=~ n_0 \left[ 1 + { \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } \left( 1 - {\large { 3 \over 2 } } \sin( i )^2 \right) (1-e^2)^{1/2} \right] ~\approx~ n_0 $

$ { \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ a ( 1 - e^2 ) } } ~ { { 2 \pi } \over T } ) ~ \cos( i ) $

Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing.

----

=== An example ===
 
An 8 degree inclined orbit, $ r_p $ = 8378 km, $ r_a $ = 76000 km, period 86164.099 seconds
 
So, $ a $ = 42164 km, e = 0.80189, p = 15051.209 km,

$ { \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~= $ 2.92784e-4

$ \bar{n} ~= n_0 \times 1.000171899 $ which suggests the orbital period is reduced by 0.000171869 × 86164.099 or 14.809 seconds

The apsides will precess by about the same amount per orbit.

----

=== Wikipedia differs? ===

A different result from Wikipedia's [[https://en.wikipedia.org/wiki/Nodal_precession | Nodal precession ]] page.

$ \omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i $

Apsidal Precession


The Earth's equatorial bulge causes orbits (perigee and apogee) to drift westward. From AE Roy Orbital Motion 1978:

longitude of the ascending node

a

semimajor axis

e

eccentricity

i

inclination

\mu

standard gravitational parameter, 398600.4418 km³/s² for Earth

J_2

zonal ablateness factor, 1.08262668e-3 for Earth

p

p ~=~ a ( 1 - e^2 ) = r_p r_a / a

n_0

unperturbed mean motion

\bar{n}

perturbed mean motion

R

Earth Equatorial Radius = 6378.137 km

T

unperturbed orbital period

{n_0}^2 ~=~ \mu / {a_0}^3 . . . unperturbed mean motion

n_0 ~ \approx \large ( { 2 \pi } \over T

\bar{n} ~=~ n_0 \left[ 1 + { \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } \left( 1 - {\large { 3 \over 2 } } \sin( i )^2 \right) (1-e^2)^{1/2} \right] ~\approx~ n_0

{ \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ a ( 1 - e^2 ) } } ~ { { 2 \pi } \over T } ) ~ \cos( i )

Roy writes about \omega as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing.


An example

An 8 degree inclined orbit, r_p = 8378 km, r_a = 76000 km, period 86164.099 seconds

So, a = 42164 km, e = 0.80189, p = 15051.209 km,

{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~= 2.92784e-4

\bar{n} ~= n_0 \times 1.000171899 which suggests the orbital period is reduced by 0.000171869 × 86164.099 or 14.809 seconds

The apsides will precess by about the same amount per orbit.


Wikipedia differs?

A different result from Wikipedia's Nodal precession page.

\omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i

ApsidalPrecession (last edited 2018-04-07 22:01:05 by KeithLofstrom)