Differences between revisions 2 and 3
Revision 2 as of 2018-04-03 21:53:56
Size: 1592
Comment:
Revision 3 as of 2018-04-03 22:02:12
Size: 1707
Comment:
Deletions are marked like this. Additions are marked like this.
Line 8: Line 8:
|| $ a_0 $ || semimajor axis || || $ a $   || semimajor axis ||
Line 12: Line 12:
|| $ J_2 $ || zonal ablateness factor                        || || $ J_2 $ || zonal ablateness factor, 1.08262668e-3 for Earth ||
Line 27: Line 27:
----
Line 29: Line 31:
An 8 degree inclined orbit, $ r_p $ = 8378 km, $ r_a $ = 76000 km.

So, $ a $ = 42164 km, e = 0.80189

Apsidal Precession


The Earth's equatorial bulge causes orbits to drift, with westward orbit perigee and apogee drifting westward. From AE Roy Orbital Motion 1978:

\Omega

longitude of the ascending node

a

semimajor axis

e

eccentricity

i

inclination

\mu

standard gravitational parameter, 398600.4418 km³/s² for Earth

J_2

zonal ablateness factor, 1.08262668e-3 for Earth

p

p ~=~ a ( 1 - e^2 ) = r_p r_a / a

n_0

unperturbed mean motion

\bar{n}

perturbed mean motion

R

Earth Equatorial Radius = 6378.137 km

{n_0}^2 ~=~ \mu / {a_0}^3 . . . unperturbed mean motion

\bar{n} ~=~ n_0 \left[ 1 + { \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } \left( 1 - {\large { 3 \over 2 } } \sin( i )^2 \right) (1-e^2)^{1/2} \right]

{ \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i )

Roy writes about \omega as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing.


An example

An 8 degree inclined orbit, r_p = 8378 km, r_a = 76000 km.

So, a = 42164 km, e = 0.80189

ApsidalPrecession (last edited 2018-04-07 22:01:05 by KeithLofstrom)