Differences between revisions 22 and 31 (spanning 9 versions)
Revision 22 as of 2018-04-07 07:34:00
Size: 2534
Comment:
Revision 31 as of 2018-04-07 22:01:05
Size: 3752
Comment:
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:

The following is [[ https://en.wikiquote.org/wiki/John_Maynard_Keynes#Misattributed | "vaguely right"]], '''for estimates only'''. Actual orbit planning will require higher precision, inclusion of perturbations for the sun, moon, and other planets, and also constellation management to avoid collisions and facilitate delivery to the final orbital destination.
Line 18: Line 21:
|| $ \omega $ || $\omega ~=~ { \large { 2 \pi } \over T } $ "average" orbit angular frequency (different from Roy) ||
Line 19: Line 23:
$ {n_0}^2 ~=~ \mu / {a_0}^3 $ . . . unperturbed mean motion Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. We will use $\omega$ for the average angular frequency.
----
Line 21: Line 26:
$ n_0 ~ \approx ~ { \large { { 2 \pi } \over T } } $ $ {n_0}^2 ~=~ \mu / {a_0}^3 $ . . . unperturbed mean motion $ ~~ n_0 ~ \approx ~ { \large { { 2 \pi } \over T } } $
Line 25: Line 30:
$ { \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~\approx ~ -{ \large { { 3 \over 2 } ~ { { J_2 R^2 } \over { a ( 1 - e^2 )^2 } } ~ { { 2 \pi } \over T } } } ~ \cos( i ) $

Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing.
$ { \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~\approx~ -{ \large { { 3 \over 2} ~ { { J_2 R^2 } \over { a^2 ( 1 - e^2 )^2 } } ~ { { 2 \pi } \over T } } } ~ \cos( i ) $
Line 30: Line 33:
=== Wikipedia ===
Line 31: Line 35:
A similar result from Wikipedia's [[https://en.wikipedia.org/wiki/Nodal_precession | Nodal precession ]] page.

$ \omega_p ~=~ - { \Large { 3 \over 2 } ~ \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \omega ~ \cos i $
----
$ \omega_p \approx \Delta \omega $ is a westward perturbation for a prograde orbit with $ \cos i ~> 0 $. We can correct the period by increasing the orbit time a little (decreasing $ \omega $ ) by increasing the perigee radius $ r_p $ (and thus $a$ ).

$ \omega ~=~ { \Large \sqrt{ \mu \over a^3 } } ~~~~~~~~~~~~~~ \Delta \omega ~=~ { \Large \sqrt{ \mu \over a^3 } } \left( -{ \Large { { 3 \over 2 } { 1 \over a } } } \Delta a \right) ~~~~~~~~~~~~~~ { \Large { { \Delta \omega } \over \omega } } ~=~ - { \Large { { 3 \over 2 } { { \Delta a } \over a } } } $

so

$ \Delta a ~\approx ~ A ~ { \Large \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \cos i ~~~~~~~~~~~~~~~~ $ also $~~ \Delta T ~\approx { \Large {3 \over 2}} ~T~ { \Large \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \cos i $

----
Line 32: Line 49:
 
Line 39: Line 56:
$ \bar{n} ~= n_0 \times 1.000171899 $ which suggests the orbital period is reduced by 0.000171869 × 86164.099 or 14.809 seconds
Line 44: Line 59:

=== Wikipedia differs? ===

A different result from Wikipedia's [[https://en.wikipedia.org/wiki/Nodal_precession | Nodal precession ]] page.

$ \omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i $

Apsidal Precession

The following is "vaguely right", for estimates only. Actual orbit planning will require higher precision, inclusion of perturbations for the sun, moon, and other planets, and also constellation management to avoid collisions and facilitate delivery to the final orbital destination.


The Earth's equatorial bulge causes orbits (perigee and apogee) to drift westward. From AE Roy Orbital Motion 1978:

\Omega

longitude of the ascending node

a

semimajor axis

e

eccentricity

i

inclination

\mu

standard gravitational parameter, 398600.4418 km³/s² for Earth

J_2

zonal ablateness factor, 1.08262668e-3 for Earth

p

p ~=~ a ( 1 - e^2 ) = r_p r_a / a

n_0

unperturbed mean motion

\bar{n}

perturbed mean motion

R

Earth Equatorial Radius = 6378.137 km

T

unperturbed orbital period

\omega

\omega ~=~ { \large { 2 \pi } \over T } "average" orbit angular frequency (different from Roy)

Roy writes about \omega as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. We will use \omega for the average angular frequency.


{n_0}^2 ~=~ \mu / {a_0}^3 . . . unperturbed mean motion ~~ n_0 ~ \approx ~ { \large { { 2 \pi } \over T } }

\bar{n} ~=~ n_0 \left[ 1 + { \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } \left( 1 - {\large { 3 \over 2 } } \sin( i )^2 \right) (1-e^2)^{1/2} \right] ~\approx~ n_0

{ \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~\approx~ -{ \large { { 3 \over 2} ~ { { J_2 R^2 } \over { a^2 ( 1 - e^2 )^2 } } ~ { { 2 \pi } \over T } } } ~ \cos( i )


Wikipedia

A similar result from Wikipedia's Nodal precession page.

\omega_p ~=~ - { \Large { 3 \over 2 } ~ \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \omega ~ \cos i


\omega_p \approx \Delta \omega is a westward perturbation for a prograde orbit with \cos i ~> 0 . We can correct the period by increasing the orbit time a little (decreasing \omega ) by increasing the perigee radius r_p (and thus a ).

\omega ~=~ { \Large \sqrt{ \mu \over a^3 } } ~~~~~~~~~~~~~~ \Delta \omega ~=~ { \Large \sqrt{ \mu \over a^3 } } \left( -{ \Large { { 3 \over 2 } { 1 \over a } } } \Delta a \right) ~~~~~~~~~~~~~~ { \Large { { \Delta \omega } \over \omega } } ~=~ - { \Large { { 3 \over 2 } { { \Delta a } \over a } } }

so

\Delta a ~\approx ~ A ~ { \Large \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \cos i ~~~~~~~~~~~~~~~~ also ~~ \Delta T ~\approx { \Large {3 \over 2}} ~T~ { \Large \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \cos i


An example

An 8 degree inclined orbit, r_p = 8378 km, r_a = 76000 km, period 86164.099 seconds

So, a = 42164 km, e = 0.80189, p = 15051.209 km,

{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~= 2.92784e-4

The apsides will precess by about the same amount per orbit.


ApsidalPrecession (last edited 2018-04-07 22:01:05 by KeithLofstrom)