Processing Math: 4%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 23 and 24
Revision 23 as of 2018-04-07 18:45:12
Size: 2523
Comment:
Revision 24 as of 2018-04-07 20:49:25
Size: 2394
Comment:
Deletions are marked like this. Additions are marked like this.
Line 19: Line 19:
Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing.
Line 27: Line 29:
Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. ----
=== Wikipedia ===

A similar result from Wikipedia's [[https://en.wikipedia.org/wiki/Nodal_precession | Nodal precession ]] page.

$ \omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i $
Line 30: Line 37:
=== An example ===
Line 31: Line 39:
=== An example ===
 
Line 39: Line 45:
$ \bar{n} ~= n_0 \times 1.000171899 $ which suggests the orbital period is reduced by 0.000171869 × 86164.099 or 14.809 seconds
Line 44: Line 48:

=== Wikipedia ===

A similar result from Wikipedia's [[https://en.wikipedia.org/wiki/Nodal_precession | Nodal precession ]] page.

$ \omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i $

Apsidal Precession


The Earth's equatorial bulge causes orbits (perigee and apogee) to drift westward. From AE Roy Orbital Motion 1978:

longitude of the ascending node

a

semimajor axis

e

eccentricity

i

inclination

\mu

standard gravitational parameter, 398600.4418 km³/s² for Earth

J_2

zonal ablateness factor, 1.08262668e-3 for Earth

p

p ~=~ a ( 1 - e^2 ) = r_p r_a / a

n_0

unperturbed mean motion

\bar{n}

perturbed mean motion

R

Earth Equatorial Radius = 6378.137 km

T

unperturbed orbital period

Roy writes about \omega as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing.

{n_0}^2 ~=~ \mu / {a_0}^3 . . . unperturbed mean motion

n_0 ~ \approx ~ { \large { { 2 \pi } \over T } }

\bar{n} ~=~ n_0 \left[ 1 + { \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } \left( 1 - {\large { 3 \over 2 } } \sin( i )^2 \right) (1-e^2)^{1/2} \right] ~\approx~ n_0

{ \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~\approx ~ -{ \large { { 3 \over 2 } ~ { { J_2 R^2 } \over { a ( 1 - e^2 )^2 } } ~ { { 2 \pi } \over T } } } ~ \cos( i )


Wikipedia

A similar result from Wikipedia's Nodal precession page.

\omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i


An example

An 8 degree inclined orbit, r_p = 8378 km, r_a = 76000 km, period 86164.099 seconds

So, a = 42164 km, e = 0.80189, p = 15051.209 km,

{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~= 2.92784e-4

The apsides will precess by about the same amount per orbit.


ApsidalPrecession (last edited 2018-04-07 22:01:05 by KeithLofstrom)