Size: 2523
Comment:
|
Size: 3098
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 18: | Line 18: |
|| $ \omega $ || $\omega ~=~ { \large { 2 \pi } \over T } $ "average" orbit angular frequency (different from Roy) || | |
Line 19: | Line 20: |
$ {n_0}^2 ~=~ \mu / {a_0}^3 $ . . . unperturbed mean motion | Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. We will use $\omega$ for the average angular frequency. ---- |
Line 21: | Line 23: |
$ n_0 ~ \approx ~ { \large { { 2 \pi } \over T } } $ | $ {n_0}^2 ~=~ \mu / {a_0}^3 $ . . . unperturbed mean motion $ ~~ n_0 ~ \approx ~ { \large { { 2 \pi } \over T } } $ |
Line 27: | Line 29: |
Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. | ---- === Wikipedia === A similar result from Wikipedia's [[https://en.wikipedia.org/wiki/Nodal_precession | Nodal precession ]] page. $ \omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i $ ---- This is a westward perturbation for a prograde orbit with $ cos i ~> 0 $. We can correct the period by increasing the orbit time a little (decreasing $ \omega $ ) by increasing the perigee radius $ r_p $ (and thus $a$ ). $ \omega ~=~ { \Large \sqrt{ \mu \over a^3 } } ~~~~~~ \Delta \omega ~=~ { \Large \sqrt{ \mu \over a^3 } } \left( -{ \Large { { 3 \over 2 } { 1 \over a } } } \Delta a \right) ~~~~~~ { \Large { { \Delta \omega } \over \omega } } ~=~ - { \Large { { 3 \over 2 } { { \delta a } \over a } } } $ |
Line 30: | Line 41: |
=== An example === | |
Line 31: | Line 43: |
=== An example === |
|
Line 39: | Line 49: |
$ \bar{n} ~= n_0 \times 1.000171899 $ which suggests the orbital period is reduced by 0.000171869 × 86164.099 or 14.809 seconds |
|
Line 44: | Line 52: |
=== Wikipedia === A similar result from Wikipedia's [[https://en.wikipedia.org/wiki/Nodal_precession | Nodal precession ]] page. $ \omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i $ |
Apsidal Precession
The Earth's equatorial bulge causes orbits (perigee and apogee) to drift westward. From AE Roy Orbital Motion 1978:
|
longitude of the ascending node |
|
semimajor axis |
|
eccentricity |
|
inclination |
|
standard gravitational parameter, 398600.4418 km³/s² for Earth |
|
zonal ablateness factor, 1.08262668e-3 for Earth |
|
|
|
unperturbed mean motion |
|
perturbed mean motion |
|
Earth Equatorial Radius = 6378.137 km |
|
unperturbed orbital period |
|
|
Roy writes about
a03
T2
= n0
1+3 J2R22 p2
1−23sin(i)2
(1−e2)1
2
n0
t
= −3 J2R22 p2 n
cos(i)
−23 J2R2a(1−e2)2 T2
cos(i)
Wikipedia
A similar result from Wikipedia's Nodal precession page.
p = −23 R2a(1−e2))2 J2
cosi
This is a westward perturbation for a prograde orbit with 0
\omega ~=~ { \Large \sqrt{ \mu \over a^3 } } ~~~~~~ \Delta \omega ~=~ { \Large \sqrt{ \mu \over a^3 } } \left( -{ \Large { { 3 \over 2 } { 1 \over a } } } \Delta a \right) ~~~~~~ { \Large { { \Delta \omega } \over \omega } } ~=~ - { \Large { { 3 \over 2 } { { \delta a } \over a } } }
An example
An 8 degree inclined orbit, r_p = 8378 km, r_a = 76000 km, period 86164.099 seconds
So, a = 42164 km, e = 0.80189, p = 15051.209 km,
{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~= 2.92784e-4
The apsides will precess by about the same amount per orbit.