Size: 2402
Comment:
|
Size: 2729
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 18: | Line 18: |
|| $ \omega $ || $\omega ~=~ \large { 2 \pi } \over T $ "average" orbit angular frequency (differ from Roy) || | |
Line 19: | Line 20: |
Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. |
Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. We will use $\omega$ for the average angular frequency. |
Line 37: | Line 37: |
---- This is a westward perturbation for a prograde orbit with $ cos i ~> 0 $. We can correct the period by increasing the orbit time a little (decreasing |
Apsidal Precession
The Earth's equatorial bulge causes orbits (perigee and apogee) to drift westward. From AE Roy Orbital Motion 1978:
\Omega |
longitude of the ascending node |
a |
semimajor axis |
e |
eccentricity |
i |
inclination |
\mu |
standard gravitational parameter, 398600.4418 km³/s² for Earth |
J_2 |
zonal ablateness factor, 1.08262668e-3 for Earth |
p |
p ~=~ a ( 1 - e^2 ) = r_p r_a / a |
n_0 |
unperturbed mean motion |
\bar{n} |
perturbed mean motion |
R |
Earth Equatorial Radius = 6378.137 km |
T |
unperturbed orbital period |
\omega |
\omega ~=~ \large { 2 \pi } \over T "average" orbit angular frequency (differ from Roy) |
Roy writes about \omega as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. We will use \omega for the average angular frequency.
{n_0}^2 ~=~ \mu / {a_0}^3 . . . unperturbed mean motion
n_0 ~ \approx ~ { \large { { 2 \pi } \over T } }
\bar{n} ~=~ n_0 \left[ 1 + { \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } \left( 1 - {\large { 3 \over 2 } } \sin( i )^2 \right) (1-e^2)^{1/2} \right] ~\approx~ n_0
{ \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~\approx ~ -{ \large { { 3 \over 2 } ~ { { J_2 R^2 } \over { a ( 1 - e^2 )^2 } } ~ { { 2 \pi } \over T } } } ~ \cos( i )
Wikipedia
A similar result from Wikipedia's Nodal precession page.
\omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i
This is a westward perturbation for a prograde orbit with cos i ~> 0 . We can correct the period by increasing the orbit time a little (decreasing
An example
An 8 degree inclined orbit, r_p = 8378 km, r_a = 76000 km, period 86164.099 seconds
So, a = 42164 km, e = 0.80189, p = 15051.209 km,
{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~= 2.92784e-4
The apsides will precess by about the same amount per orbit.