Differences between revisions 26 and 31 (spanning 5 versions)
Revision 26 as of 2018-04-07 20:55:13
Size: 2729
Comment:
Revision 31 as of 2018-04-07 22:01:05
Size: 3752
Comment:
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:

The following is [[ https://en.wikiquote.org/wiki/John_Maynard_Keynes#Misattributed | "vaguely right"]], '''for estimates only'''. Actual orbit planning will require higher precision, inclusion of perturbations for the sun, moon, and other planets, and also constellation management to avoid collisions and facilitate delivery to the final orbital destination.
Line 18: Line 21:
|| $ \omega $ || $\omega ~=~ \large { 2 \pi } \over T $ "average" orbit angular frequency (differ from Roy) || || $ \omega $ || $\omega ~=~ { \large { 2 \pi } \over T } $ "average" orbit angular frequency (different from Roy) ||
Line 23: Line 26:
$ {n_0}^2 ~=~ \mu / {a_0}^3 $ . . . unperturbed mean motion

$ n_0 ~ \approx ~ { \large { { 2 \pi } \over T } } $
$ {n_0}^2 ~=~ \mu / {a_0}^3 $ . . . unperturbed mean motion  $ ~~ n_0 ~ \approx ~ { \large { { 2 \pi } \over T } } $
Line 29: Line 30:
$ { \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~\approx ~ -{ \large { { 3 \over 2 } ~ { { J_2 R^2 } \over { a ( 1 - e^2 )^2 } } ~ { { 2 \pi } \over T } } } ~ \cos( i ) $ $ { \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~\approx~ -{ \large { { 3 \over 2} ~ { { J_2 R^2 } \over { a^2 ( 1 - e^2 )^2 } } ~ { { 2 \pi } \over T } } } ~ \cos( i ) $
Line 36: Line 37:
$ \omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i $ $ \omega_p ~=~ - { \Large { 3 \over 2 } ~ \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \omega ~ \cos i $
Line 38: Line 39:
This is a westward perturbation for a prograde orbit with $ cos i ~> 0 $. We can correct the period by increasing the orbit time a little (decreasing $ \omega_p \approx \Delta \omega $ is a westward perturbation for a prograde orbit with $ \cos i ~> 0 $. We can correct the period by increasing the orbit time a little (decreasing $ \omega $ ) by increasing the perigee radius $ r_p $ (and thus $a$ ).

$ \omega ~=~ { \Large \sqrt{ \mu \over a^3 } } ~~~~~~~~~~~~~~ \Delta \omega ~=~ { \Large \sqrt{ \mu \over a^3 } } \left( -{ \Large { { 3 \over 2 } { 1 \over a } } } \Delta a \right) ~~~~~~~~~~~~~~ { \Large { { \Delta \omega } \over \omega } } ~=~ - { \Large { { 3 \over 2 } { { \Delta a } \over a } } } $

so

$ \Delta a ~\approx ~ A ~ { \Large \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \cos i ~~~~~~~~~~~~~~~~ $ also $~~ \Delta T ~\approx { \Large {3 \over 2}} ~T~ { \Large \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \cos i $

Apsidal Precession

The following is "vaguely right", for estimates only. Actual orbit planning will require higher precision, inclusion of perturbations for the sun, moon, and other planets, and also constellation management to avoid collisions and facilitate delivery to the final orbital destination.


The Earth's equatorial bulge causes orbits (perigee and apogee) to drift westward. From AE Roy Orbital Motion 1978:

\Omega

longitude of the ascending node

a

semimajor axis

e

eccentricity

i

inclination

\mu

standard gravitational parameter, 398600.4418 km³/s² for Earth

J_2

zonal ablateness factor, 1.08262668e-3 for Earth

p

p ~=~ a ( 1 - e^2 ) = r_p r_a / a

n_0

unperturbed mean motion

\bar{n}

perturbed mean motion

R

Earth Equatorial Radius = 6378.137 km

T

unperturbed orbital period

\omega

\omega ~=~ { \large { 2 \pi } \over T } "average" orbit angular frequency (different from Roy)

Roy writes about \omega as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. We will use \omega for the average angular frequency.


{n_0}^2 ~=~ \mu / {a_0}^3 . . . unperturbed mean motion ~~ n_0 ~ \approx ~ { \large { { 2 \pi } \over T } }

\bar{n} ~=~ n_0 \left[ 1 + { \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } \left( 1 - {\large { 3 \over 2 } } \sin( i )^2 \right) (1-e^2)^{1/2} \right] ~\approx~ n_0

{ \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~\approx~ -{ \large { { 3 \over 2} ~ { { J_2 R^2 } \over { a^2 ( 1 - e^2 )^2 } } ~ { { 2 \pi } \over T } } } ~ \cos( i )


Wikipedia

A similar result from Wikipedia's Nodal precession page.

\omega_p ~=~ - { \Large { 3 \over 2 } ~ \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \omega ~ \cos i


\omega_p \approx \Delta \omega is a westward perturbation for a prograde orbit with \cos i ~> 0 . We can correct the period by increasing the orbit time a little (decreasing \omega ) by increasing the perigee radius r_p (and thus a ).

\omega ~=~ { \Large \sqrt{ \mu \over a^3 } } ~~~~~~~~~~~~~~ \Delta \omega ~=~ { \Large \sqrt{ \mu \over a^3 } } \left( -{ \Large { { 3 \over 2 } { 1 \over a } } } \Delta a \right) ~~~~~~~~~~~~~~ { \Large { { \Delta \omega } \over \omega } } ~=~ - { \Large { { 3 \over 2 } { { \Delta a } \over a } } }

so

\Delta a ~\approx ~ A ~ { \Large \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \cos i ~~~~~~~~~~~~~~~~ also ~~ \Delta T ~\approx { \Large {3 \over 2}} ~T~ { \Large \left( R \over { a (1-e^2) } \right)}^2 ~ J_2 ~ \cos i


An example

An 8 degree inclined orbit, r_p = 8378 km, r_a = 76000 km, period 86164.099 seconds

So, a = 42164 km, e = 0.80189, p = 15051.209 km,

{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~= 2.92784e-4

The apsides will precess by about the same amount per orbit.


ApsidalPrecession (last edited 2018-04-07 22:01:05 by KeithLofstrom)