Differences between revisions 9 and 26 (spanning 17 versions)
Revision 9 as of 2018-04-07 07:11:17
Size: 2268
Comment:
Revision 26 as of 2018-04-07 20:55:13
Size: 2729
Comment:
Deletions are marked like this. Additions are marked like this.
Line 17: Line 17:
|| $ T $ || unperturbed orbital period ||
|| $ \omega $ || $\omega ~=~ \large { 2 \pi } \over T $ "average" orbit angular frequency (differ from Roy) ||
Line 18: Line 20:
Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. We will use $\omega$ for the average angular frequency.
----
Line 21: Line 25:
$ n_0 ~ \approx ~ { \large { { 2 \pi } \over T } } $
Line 23: Line 29:
$ { \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) = $

Roy writes about $\omega$ as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing.
$ { \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~\approx ~ -{ \large { { 3 \over 2 } ~ { { J_2 R^2 } \over { a ( 1 - e^2 )^2 } } ~ { { 2 \pi } \over T } } } ~ \cos( i ) $
Line 28: Line 32:
=== Wikipedia ===
Line 29: Line 34:
A similar result from Wikipedia's [[https://en.wikipedia.org/wiki/Nodal_precession | Nodal precession ]] page.

$ \omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i $
----
This is a westward perturbation for a prograde orbit with $ cos i ~> 0 $. We can correct the period by increasing the orbit time a little (decreasing

----
Line 30: Line 42:

An 8 degree inclined orbit, $ r_p $ = 8378 km, $ r_a $ = 76000 km, period 86164.099 seconds
Line 31: Line 45:
An 8 degree inclined orbit, $ r_p $ = 8378 km, $ r_a $ = 76000 km, period 86164.099 seconds
Line 37: Line 49:
$ \bar{n} ~= n_0 \times 1.000171899 $ which suggests the orbital period is reduced by 0.000171869 × 86164.099 or 14.809 seconds
Line 42: Line 52:

=== Wikipedia differs? ===

A different result from Wikipedia's [[https://en.wikipedia.org/wiki/Nodal_precession | Nodal precession]] page.

$ \omega_p ~=~ { \Large -{ 3 \over 2 } { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i $

Apsidal Precession


The Earth's equatorial bulge causes orbits (perigee and apogee) to drift westward. From AE Roy Orbital Motion 1978:

\Omega

longitude of the ascending node

a

semimajor axis

e

eccentricity

i

inclination

\mu

standard gravitational parameter, 398600.4418 km³/s² for Earth

J_2

zonal ablateness factor, 1.08262668e-3 for Earth

p

p ~=~ a ( 1 - e^2 ) = r_p r_a / a

n_0

unperturbed mean motion

\bar{n}

perturbed mean motion

R

Earth Equatorial Radius = 6378.137 km

T

unperturbed orbital period

\omega

\omega ~=~ \large { 2 \pi } \over T "average" orbit angular frequency (differ from Roy)

Roy writes about \omega as if it is the angle from the orbiting body perpendicular the equatorial plane ... or something. Confusing. We will use \omega for the average angular frequency.


{n_0}^2 ~=~ \mu / {a_0}^3 . . . unperturbed mean motion

n_0 ~ \approx ~ { \large { { 2 \pi } \over T } }

\bar{n} ~=~ n_0 \left[ 1 + { \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } \left( 1 - {\large { 3 \over 2 } } \sin( i )^2 \right) (1-e^2)^{1/2} \right] ~\approx~ n_0

{ \Large { { \partial \Omega } \over { \partial t } } } ~=~ -{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~ \bar{n} ~ \cos( i ) ~\approx ~ -{ \large { { 3 \over 2 } ~ { { J_2 R^2 } \over { a ( 1 - e^2 )^2 } } ~ { { 2 \pi } \over T } } } ~ \cos( i )


Wikipedia

A similar result from Wikipedia's Nodal precession page.

\omega_p ~=~ - { \Large { 3 \over 2 } ~ { { R^2 } \over { a (1-e^2) )^2 } } } ~ J_2 ~ \omega ~ \cos i


This is a westward perturbation for a prograde orbit with cos i ~> 0 . We can correct the period by increasing the orbit time a little (decreasing


An example

An 8 degree inclined orbit, r_p = 8378 km, r_a = 76000 km, period 86164.099 seconds

So, a = 42164 km, e = 0.80189, p = 15051.209 km,

{ \large { { 3 ~ J_2 R^2 } \over { 2 ~~~ p^2 ~ } } } ~= 2.92784e-4

The apsides will precess by about the same amount per orbit.


ApsidalPrecession (last edited 2018-04-07 22:01:05 by KeithLofstrom)