Thinsat Charging and Array Spreading Forces

Assume N thinsats are charged to voltage V_th and are spaced L units apart in an approximately triangular geodesic grid mapped on a sphere. The area of the unit cell is √3/2 L², the area of the sphere is √3/2 L² N = 4 π R², so

R ~=~ \sqrt{ { \Large { \sqrt{ 3 } \over { 8 \pi } } } N } ~ L ~\approx~ 0.26252 \sqrt{ N } ~ L

If the thinsat sphere is 7842 thinsats (icosahedral geodesic sphere with tiling ratio V = 28) and L = 5 meters, then R = 116 meters .

The capacitance of a square (pointy corner!) thinsat with side S is C = 0.367 × 4πε₀ × S; for a 16 cm thinsat, C₁ = 0.367 × 111.265 pF/m × 0.16 m = 6.530 pF. If the voltage on the thinsat is 800V, the charge is Q_1 = C_1 V = 5223 picoColomb per thinsat

The charge on the whole sphere of thinsats creates a Colomb force on a single thinsat. This resembles the math that shows that the gravitational force at (or above) a spherical shell is like the force from a concentrated mass at the center; we can move the charge to the center, and the effect on a charge at the edge will be the same. This simplifies the math; the force on a thinsat is approximately the simple Colomb force between the charge of N thinsats in the center and the charge of one thinsat distance R away:

More later ... not looking good



Scaling: