Differences between revisions 8 and 9
Revision 8 as of 2012-11-30 06:41:59
Size: 933
Comment:
Revision 9 as of 2012-11-30 06:44:38
Size: 1065
Comment:
Deletions are marked like this. Additions are marked like this.
Line 17: Line 17:
The signal is broadband, so there is not a well defined $ \lambda $. We may end up making k a function of x, y, and z as well.

Array Phasing

When we randomly dither the position of the emitters in a 3 dimensional phased array, it smears out the grating lobes. I am looking for a better function.

A position dither function to try:

D = \lambda/2

k = 2 \pi / N * L

\Delta x = D * ( \sin( k z ) + \cos( k y ) )

\Delta y = D * ( \sin( k x ) + \cos( k z ) )

\Delta z = D * ( \sin( k y ) + \cos( k x ) )

... or some variation of that. This assumes the spacing L >> \lambda , a sparse array, so that the antennas do not couple (much). Try scaling D and k, and also modifying amplitudes across the array like a Hamming window, and see how that changes the sidelobes.

This happens on top of the array of perhaps hundreds of emitters on the thinsat itself, which beamforms to a few degrees of angle, reducing power splattered far from the target.

The signal is broadband, so there is not a well defined \lambda . We may end up making k a function of x, y, and z as well.

MORE LATER

ArrayPhasing (last edited 2021-06-08 17:57:55 by KeithLofstrom)