Differences between revisions 1 and 2
Revision 1 as of 2016-06-07 19:17:09
Size: 2347
Comment:
Revision 2 as of 2016-06-07 19:30:11
Size: 2413
Comment:
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:
A colleague proposes a simplification to the gravitational equation, using the system center of mass.   A colleague proposes a simplification to the gravitational equation, using the system center of mass.
Line 8: Line 8:
$ F_N ~ = ~ { G m_1 m_2 } \over { r ^ 2 } $ $ F_N ~ = ~ \large { { G m_1 m_2 } \over { r ^ 2 } } $
Line 11: Line 11:
$ r_1 $ and $ r_2 $ can be calculated from  $ r_1 $ and $ r_2 $ can be calculated from
Line 13: Line 13:
$ r_1 m_1 ~ = ~ r_2 m_2 $  and $ r_1 + r_2 ~ = ~ r $ $ r_1 m_1 ~ = ~ r_2 m_2 ~ ~ ~ $ and $ ~ ~ ~ r_1 + r_2 ~ = ~ r $
Line 15: Line 15:
With a little bit of algebra, we can solve for $ r_1 $ and $ r_2 $ : With a little bit of algebra, we can solve for $ r_1 ~ ~ ~ $ and $ ~ ~ ~ r_2 $ :
Line 17: Line 17:
$ r_1 ~ = ~ r \over { 1 + m_2 / m_1 } $ and $ r_2 ~ = ~ r \over { 1 + m_1 / m_2 } $ $ r_1 = \large { r \over { 1 + m_2 / m_1 } } ~ ~ ~ $ and $ ~ ~ ~ r_2 = \large { r \over { 1 + m_1 / m_2 } } $
Line 21: Line 21:
$ F_? ~ = ~ G left( { m_1 \over r_1 } right) left( { m_2 \over r_2 } right) $ . . . ???? $ F_? = G \large { \left( { m_1 \over r_1 } \right) \left( { m_2 \over r_2 } \right) } $ . . . ????
Line 25: Line 25:
$ F_? ~ = ~ { G left( { m_1 ( 1 + m_2 / m_1 ) \over r } right) left( { m_2 ( 1 + m_1 / m_2 ) \over r } right) $ . . . ???? $ F_? = G \large { \left( { m_1 ( 1 + m_2 / m_1 ) \over r } \right) \left( { m_2 ( 1 + m_1 / m_2 ) \over r } \right) } $ . . . ????
Line 29: Line 29:
$ F_? ~ = ~ { left( { G m_1 m_2 } \over { r ^ 2 } } right) ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) $ . . . ???? $ F_? = { \large { \left( { { G m_1 m_2 } \over { r ^ 2 } } \right) } } ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) $ . . . ????
Line 33: Line 33:
Define $ b $, the ratio of the masses, as  Define $ b $, the ratio of the masses, as
Line 35: Line 35:
$ b ~ == ~ m_1 / m_2 $ $ b = m_1 / m_2 $
Line 39: Line 39:
$ E ~ = ~ ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) $ $ E = ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) $
Line 43: Line 43:
If $ b = 1 $, then $ E ~ = ~ 4 $  if $ b = 2 $ or $ b = 0.5 $, then E ~ = ~ 4.5 $. For very large $ b $, $ E ~ \approx ~ 2 + b $, and for very small $ b $, $ E ~ \approx ~ 2 + 1 / b $ If $ b = 1 $ then $ E = 4 $, if $ b = 2 $ or $ b = 0.5 $ then $ E = 4.5 $. For very large $ b $, $ E \approx 2 + b $, and for very small $ b $, $ E \approx 2 + 1 / b $
Line 45: Line 45:
|| $ b $ || $ E $ ||  || $ b $ || $ E $ ||
Line 60: Line 60:
and the acceleration of $ m_1 $ is  and the acceleration of $ m_1 $ is

A Bad Gravitational Approximation

A colleague proposes a simplification to the gravitational equation, using the system center of mass.

Assume two masses m_1 and m_2 separated by distance r. According to standard Newtonian physics, the force between them is:

F_N ~ = ~ \large { { G m_1 m_2 } \over { r ^ 2 } }

If r_1 is the distance from m_1 to the center of mass of the system, and r_2 the distance from COM to m_2 , r_1 and r_2 can be calculated from

r_1 m_1 ~ = ~ r_2 m_2 ~ ~ ~ and ~ ~ ~ r_1 + r_2 ~ = ~ r

With a little bit of algebra, we can solve for r_1 ~ ~ ~ and ~ ~ ~ r_2 :

r_1 = \large { r \over { 1 + m_2 / m_1 } } ~ ~ ~ and ~ ~ ~ r_2 = \large { r \over { 1 + m_1 / m_2 } }

My colleague (incorrectly) claims that the force can be calculated with:

F_? = G \large { \left( { m_1 \over r_1 } \right) \left( { m_2 \over r_2 } \right) } . . . ????

Substituting the equations for r_1 and r_2 we get:

F_? = G \large { \left( { m_1 ( 1 + m_2 / m_1 ) \over r } \right) \left( { m_2 ( 1 + m_1 / m_2 ) \over r } \right) } . . . ????

Simplifying:

F_? = { \large { \left( { { G m_1 m_2 } \over { r ^ 2 } } \right) } } ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) . . . ????

... which is never less than 4 times the actual Newtonian gravitational force.

Define b , the ratio of the masses, as

b = m_1 / m_2

Define the error factor E :

E = ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 )

F_? ~ = ~ F_N \times E

If b = 1 then E = 4 , if b = 2 or b = 0.5 then E = 4.5 . For very large b , E \approx 2 + b , and for very small b , E \approx 2 + 1 / b

b

E

0.001

1002.001

0.01

102.01

0.1

12.1

0.3

5.6333...

1.0

4.0

3.0

5.3333...

10.0

12.1

100.0

102.01

1000.0

1002.001

For very small m_1 compared to m_2 , the F_? "force" becomes:

F_? ~ \approx ~ G \left( { {m_2}^2 \over { r^2 } } \right)

and the acceleration of m_1 is

a_? ~ = ~ F_? / m_1 ~ \approx ~ G \left( { {m_2}^2 \over { m_1 ~ r^2 } } \right) = a_N * { m_2 / m_1 }

The force difference between an electron and a proton could tear a hydrogen atom apart. Not very likely.

BadGravity (last edited 2016-06-08 23:37:34 by KeithLofstrom)