Differences between revisions 2 and 20 (spanning 18 versions)
Revision 2 as of 2016-06-07 19:30:11
Size: 2413
Comment:
Revision 20 as of 2016-06-08 23:37:34
Size: 3188
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
= A Bad Gravitational Approximation = = An Inaccurate Gravitational Approximation =
Line 8: Line 8:
$ F_N ~ = ~ \large { { G m_1 m_2 } \over { r ^ 2 } } $ 1) $ F_N ~ = ~ \Large { { G m_1 m_2 } \over { r ^ 2 } } $
Line 10: Line 10:
If $ r_1 $ is the distance from $ m_1 $ to the center of mass of the system, and $ r_2 $ the distance from COM to $ m_2 $, If $ r_1 $ is the distance from $ m_1 $ to the center of mass of the system, and $ r_2 $ the distance from the center of mass to $ m_2 $,
Line 13: Line 13:
$ r_1 m_1 ~ = ~ r_2 m_2 ~ ~ ~ $ and $ ~ ~ ~ r_1 + r_2 ~ = ~ r $ 2a) $ r_1 m_1 ~ = ~ r_2 m_2 ~ ~ ~ $ and 2b) $ ~ ~ ~ r_1 + r_2 ~ = ~ r $
Line 17: Line 17:
$ r_1 = \large { r \over { 1 + m_2 / m_1 } } ~ ~ ~ $ and $ ~ ~ ~ r_2 = \large { r \over { 1 + m_1 / m_2 } } $ 3) $ r_1 = \Large { r \over { 1 + m_2 / m_1 } } ~ ~ ~ $ and $ ~ ~ ~ r_2 = \large { r \over { 1 + m_1 / m_2 } } $
Line 21: Line 21:
$ F_? = G \large { \left( { m_1 \over r_1 } \right) \left( { m_2 \over r_2 } \right) } $ . . . ???? 4) $ F_? = G \Large { \left( { m_1 \over r_1 } \right) \left( { m_2 \over r_2 } \right) } $ . . . ????
Line 25: Line 25:
$ F_? = G \large { \left( { m_1 ( 1 + m_2 / m_1 ) \over r } \right) \left( { m_2 ( 1 + m_1 / m_2 ) \over r } \right) } $ . . . ???? 5) $ F_? = G \Large { \left( { m_1 ( 1 + m_2 / m_1 ) \over r } \right) \left( { m_2 ( 1 + m_1 / m_2 ) \over r } \right) } $ . . . ????
Line 29: Line 29:
$ F_? = { \large { \left( { { G m_1 m_2 } \over { r ^ 2 } } \right) } } ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) $ . . . ???? 6) $ F_? = { \Large { \left( { { G m_1 m_2 } \over { r ^ 2 } } \right) } } ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) $ . . . ????
Line 35: Line 35:
$ b = m_1 / m_2 $ 7) $ b = m_1 / m_2 $
Line 39: Line 39:
$ E = ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) $ 8) $ E = ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) $
Line 41: Line 41:
$ F_? ~ = ~ F_N \times E $ so that
Line 43: Line 43:
If $ b = 1 $ then $ E = 4 $, if $ b = 2 $ or $ b = 0.5 $ then $ E = 4.5 $. For very large $ b $, $ E \approx 2 + b $, and for very small $ b $, $ E \approx 2 + 1 / b $ 9) $ F_? ~ = ~ F_N \times E $
Line 45: Line 45:
|| $ b $ || $ E $ || If $ b = 1 $ then $ E = 4 $.

If $ b = 2 $ or $ b = 0.5 $ then $ E = 4.5 $.

For large $ b $, $ E \approx 2 + b \approx \approx b $, and for small $ b $, $ E \approx 2 + 1 / b \approx \approx 1/b $.

|| mass ratio $ b $ || force ratio $ E $ ||
Line 49: Line 55:
|| 0.3 || 5.6333...|| || 0.2 || 7.2 ||
|| 0.5 || 4.5 ||
Line 51: Line 58:
|| 3.0 || 5.3333...|| || 2.0 || 4.5 ||
|| 5.0 || 7.2 ||
Line 55: Line 63:
|| 1047.4 || 1049.4 || Sun to Jupiter ratio ||
|| 1e33 || 1e33 || Sun to sand grain ratio ||
|| 1.2e47 || 1.2e47 || Sun to hydrogen atom ratio ||
Line 58: Line 69:
$ F_? ~ \approx ~ G \left( { {m_2}^2 \over { r^2 } } \right) $ 10) $ F_? \approx F_N / b \approx F_N m_2 / m_1 \approx G \left( \Large { {m_2}^2 \over { r^2 } } \right) $
Line 62: Line 73:
$ a_? ~ = ~ F_? / m_1 ~ \approx ~ G \left( { {m_2}^2 \over { m_1 ~ r^2 } } \right) = a_N * { m_2 / m_1 } $ 11) $ a_? = F_? / m_1 \approx G \left( \Large { {m_2}^2 \over { m_1 ~ r^2 } } \right) = a_N \times { m_2 / m_1 } $
Line 64: Line 75:
The force difference between an electron and a proton could tear a hydrogen atom apart. Not very likely.
A circular orbit has a centripedal acceleration $ a = v^2 / r $, so the orbital velocity is proportional to the square root of acceleration. 1047 times the acceleration means 32.4 times the orbital velocity.

The unrestricted 3 body problem is very difficult to solve - approximation and computers are needed, but are good enough to deliver space probes to other planets with parts-per-billion accuracy. My colleague's "approximation" is incorrect, yet more difficult to solve.

An Inaccurate Gravitational Approximation

A colleague proposes a simplification to the gravitational equation, using the system center of mass.

Assume two masses m_1 and m_2 separated by distance r. According to standard Newtonian physics, the force between them is:

1) F_N ~ = ~ \Large { { G m_1 m_2 } \over { r ^ 2 } }

If r_1 is the distance from m_1 to the center of mass of the system, and r_2 the distance from the center of mass to m_2 , r_1 and r_2 can be calculated from

2a) r_1 m_1 ~ = ~ r_2 m_2 ~ ~ ~ and 2b) ~ ~ ~ r_1 + r_2 ~ = ~ r

With a little bit of algebra, we can solve for r_1 ~ ~ ~ and ~ ~ ~ r_2 :

3) r_1 = \Large { r \over { 1 + m_2 / m_1 } } ~ ~ ~ and ~ ~ ~ r_2 = \large { r \over { 1 + m_1 / m_2 } }

My colleague (incorrectly) claims that the force can be calculated with:

4) F_? = G \Large { \left( { m_1 \over r_1 } \right) \left( { m_2 \over r_2 } \right) } . . . ????

Substituting the equations for r_1 and r_2 we get:

5) F_? = G \Large { \left( { m_1 ( 1 + m_2 / m_1 ) \over r } \right) \left( { m_2 ( 1 + m_1 / m_2 ) \over r } \right) } . . . ????

Simplifying:

6) F_? = { \Large { \left( { { G m_1 m_2 } \over { r ^ 2 } } \right) } } ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) . . . ????

... which is never less than 4 times the actual Newtonian gravitational force.

Define b , the ratio of the masses, as

7) b = m_1 / m_2

Define the error factor E :

8) E = ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 )

so that

9) F_? ~ = ~ F_N \times E

If b = 1 then E = 4 .

If b = 2 or b = 0.5 then E = 4.5 .

For large b , E \approx 2 + b \approx \approx b , and for small b , E \approx 2 + 1 / b \approx \approx 1/b .

mass ratio b

force ratio E

0.001

1002.001

0.01

102.01

0.1

12.1

0.2

7.2

0.5

4.5

1.0

4.0

2.0

4.5

5.0

7.2

10.0

12.1

100.0

102.01

1000.0

1002.001

1047.4

1049.4

Sun to Jupiter ratio

1e33

1e33

Sun to sand grain ratio

1.2e47

1.2e47

Sun to hydrogen atom ratio

For very small m_1 compared to m_2 , the F_? "force" becomes:

10) F_? \approx F_N / b \approx F_N m_2 / m_1 \approx G \left( \Large { {m_2}^2 \over { r^2 } } \right)

and the acceleration of m_1 is

11) a_? = F_? / m_1 \approx G \left( \Large { {m_2}^2 \over { m_1 ~ r^2 } } \right) = a_N \times { m_2 / m_1 }

A circular orbit has a centripedal acceleration a = v^2 / r , so the orbital velocity is proportional to the square root of acceleration. 1047 times the acceleration means 32.4 times the orbital velocity.

The unrestricted 3 body problem is very difficult to solve - approximation and computers are needed, but are good enough to deliver space probes to other planets with parts-per-billion accuracy. My colleague's "approximation" is incorrect, yet more difficult to solve.

BadGravity (last edited 2016-06-08 23:37:34 by KeithLofstrom)