#format jsmath = An Inaccurate Gravitational Approximation = A colleague proposes a simplification to the gravitational equation, using the system center of mass. Assume two masses $m_1$ and $m_2$ separated by distance $r$. According to standard Newtonian physics, the force between them is: 1) $ F_N ~ = ~ \Large { { G m_1 m_2 } \over { r ^ 2 } } $ If $ r_1 $ is the distance from $ m_1 $ to the center of mass of the system, and $ r_2 $ the distance from the center of mass to $ m_2 $, $ r_1 $ and $ r_2 $ can be calculated from 2a) $ r_1 m_1 ~ = ~ r_2 m_2 ~ ~ ~ $ and 2b) $ ~ ~ ~ r_1 + r_2 ~ = ~ r $ With a little bit of algebra, we can solve for $ r_1 ~ ~ ~ $ and $ ~ ~ ~ r_2 $ : 3) $ r_1 = \Large { r \over { 1 + m_2 / m_1 } } ~ ~ ~ $ and $ ~ ~ ~ r_2 = \large { r \over { 1 + m_1 / m_2 } } $ My colleague (incorrectly) claims that the force can be calculated with: 4) $ F_? = G \Large { \left( { m_1 \over r_1 } \right) \left( { m_2 \over r_2 } \right) } $ . . . ???? Substituting the equations for $ r_1 $ and $ r_2 $ we get: 5) $ F_? = G \Large { \left( { m_1 ( 1 + m_2 / m_1 ) \over r } \right) \left( { m_2 ( 1 + m_1 / m_2 ) \over r } \right) } $ . . . ???? Simplifying: 6) $ F_? = { \Large { \left( { { G m_1 m_2 } \over { r ^ 2 } } \right) } } ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) $ . . . ???? ... which is never less than 4 times the actual Newtonian gravitational force. Define $ b $, the ratio of the masses, as 7) $ b = m_1 / m_2 $ Define the error factor $ E $ : 8) $ E = ( 1 + m_2 / m_1 ) ( 1 + m_1 / m_2 ) $ so that 9) $ F_? ~ = ~ F_N \times E $ If $ b = 1 $ then $ E = 4 $. If $ b = 2 $ or $ b = 0.5 $ then $ E = 4.5 $. For large $ b $, $ E \approx 2 + b \approx \approx b $, and for small $ b $, $ E \approx 2 + 1 / b \approx \approx 1/b $. || mass ratio $ b $ || force ratio $ E $ || || 0.001 || 1002.001 || || 0.01 || 102.01 || || 0.1 || 12.1 || || 0.2 || 7.2 || || 0.5 || 4.5 || || 1.0 || 4.0 || || 2.0 || 4.5 || || 5.0 || 7.2 || || 10.0 || 12.1 || || 100.0 || 102.01 || || 1000.0 || 1002.001 || || 1047.4 || 1049.4 || Sun to Jupiter ratio || || 1e33 || 1e33 || Sun to sand grain ratio || || 1.2e47 || 1.2e47 || Sun to hydrogen atom ratio || For very small $ m_1 $ compared to $ m_2 $, the $ F_? $ "force" becomes: 10) $ F_? \approx F_N / b \approx F_N m_2 / m_1 \approx G \left( \Large { {m_2}^2 \over { r^2 } } \right) $ and the acceleration of $ m_1 $ is 11) $ a_? = F_? / m_1 \approx G \left( \Large { {m_2}^2 \over { m_1 ~ r^2 } } \right) = a_N \times { m_2 / m_1 } $ A circular orbit has a centripedal acceleration $ a = v^2 / r $, so the orbital velocity is proportional to the square root of acceleration. 1047 times the acceleration means 32.4 times the orbital velocity. The unrestricted 3 body problem is very difficult to solve - approximation and computers are needed, but are good enough to deliver space probes to other planets with parts-per-billion accuracy. My colleague's "approximation" is incorrect, yet more difficult to solve.