Differences between revisions 5 and 9 (spanning 4 versions)
Revision 5 as of 2015-10-10 17:12:11
Size: 301
Comment:
Revision 9 as of 2015-10-11 01:13:36
Size: 3178
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
#format jsmath
Line 3: Line 4:

=== 60K 50AU Dyson shell ===

$ \Large B(\lambda) = \LARGE { { 2 h c } \over { \lambda^3 \left( e^{ h c / \lambda k T } - 1 \right) } } = { { 4e19 ~ Jy / sr ~ {\mu}m^3 } \over { \lambda^3 \left( e^{ 240 {\mu} m / \lambda } - 1 \right) } } $

This is for an infinite resolution imager - at large distances, the power is the image angular area divided by the pixel angular area. This scales the intensity way down for distant Dyson shells. If the ratio of shell intensity to background is $ F $, the pixel size in arcseconds is $ px $, the shell radius in AU is $ r $, and the distance in parsecs is $ R $, then the angular size $ A $ is:

$ A ~ = ~ \pi ( r / R )^2 $

$ F ~ = ~ px^2 / A = ( px ~ R / r ) ^2 / \pi $

$ R ~ = ~ ( 50" / px ) \sqrt{ \pi F } $

$px$ is 90" (90 arcseconds) for IRAS, 12" for WISE, and .11" for JWST. It is 2.3" for Spitzer MIPS ('''M'''ultiband '''I'''maging '''P'''hotometer for '''S'''pitzer) 24 μm (128x128 pixels) and 9.4" for Spitzer 70 μm (16x32 pixels).

$ R ~=~ 0.96 \sqrt{ F } $ for IRAS, $ 7.2 \sqrt{ F } $ for WISE, and $ 790 \sqrt{ F } $ for JWST. Of those three, only IRAS has sensors for wavelengths longer than 25 μm. $ R ~=~ 38 \sqrt{ F } $ for 24 μm Spitzer and $ 9.2 \sqrt{ F } $ for 70 μm Spitzer.

-----
Line 7: Line 27:
The zodiac is highly inclined compared to the galaxy, but these plots show it intersecting near galactic center. This is fortunate if true - we are unlikly to distinguish a Dyson shell where the background is very dense (too confusing) or very thin (radially outwards, fewer candidates).
Line 8: Line 30:

 . frequency = 299792 GHz-μm/λ
 . Ellis: Z zodiacal, C cirrus
 . B 60K 100 AU 1-sun Dyson, full pixel

|| Band(um) || 12μm || 25μm || 60μm || 70 μm || 100μm ||
|| frequency || 25 THz || 12 THz || 5 THz || 4.3 THz || 3 THz ||
|| Z nW/m^2^-sr || 2800 || 1800 || 190 || 130 || 42 ||
|| Z Jy-sr || 1.12e7 || 1.5e7 || 3.8e6 || 3.0e6 || 1.4e6 ||
|| C nW/m^2^-sr || 4.8 || 2.3 || 3.2 || 4.5 || 13 ||
|| C Jy-sr || 1.9e4 || 1.9e4 || 6.4e4 || 1.1e5 || 4.3e5 ||
|| B Jy-sr || 4.8e7 || 1.7e11 || 3.5e12 || 3.9e12 || 4.0e12 ||
|| B/(C+Z) || 4.3 || 1.1e4 || 9.1e5 || 1.3e6 || 2.2e6 || we will probably ignore zodiacal measurements ||
|| F=B/C || 2.5e3 || 8.9e6 || 5.5e7 || 3.5e7 || 9.3e6 || assume measurements in galactic plane ||
|| R IRAS pc || 49 || 2900 || 7000 || -- || 3000 ||
|| R WISE pc || 135 || 8000 || -- || -- || -- ||
|| R Spitzer pc || -- || 110000 || -- || 54000 || -- ||
|| R JWST pc || 1400 || 84000 || -- || -- || -- ||

Galactic Cirrus and Zodiacal Light


60K 50AU Dyson shell

\Large B(\lambda) = \LARGE { { 2 h c } \over { \lambda^3 \left( e^{ h c / \lambda k T } - 1 \right) } } = { { 4e19 ~ Jy / sr ~ {\mu}m^3 } \over { \lambda^3 \left( e^{ 240 {\mu} m / \lambda } - 1 \right) } }

This is for an infinite resolution imager - at large distances, the power is the image angular area divided by the pixel angular area. This scales the intensity way down for distant Dyson shells. If the ratio of shell intensity to background is F , the pixel size in arcseconds is px , the shell radius in AU is r , and the distance in parsecs is R , then the angular size A is:

A ~ = ~ \pi ( r / R )^2

F ~ = ~ px^2 / A = ( px ~ R / r ) ^2 / \pi

R ~ = ~ ( 50" / px ) \sqrt{ \pi F }

px is 90" (90 arcseconds) for IRAS, 12" for WISE, and .11" for JWST. It is 2.3" for Spitzer MIPS (Multiband Imaging Photometer for Spitzer) 24 μm (128x128 pixels) and 9.4" for Spitzer 70 μm (16x32 pixels).

R ~=~ 0.96 \sqrt{ F } for IRAS, 7.2 \sqrt{ F } for WISE, and 790 \sqrt{ F } for JWST. Of those three, only IRAS has sensors for wavelengths longer than 25 μm. R ~=~ 38 \sqrt{ F } for 24 μm Spitzer and 9.2 \sqrt{ F } for 70 μm Spitzer.


attachment:cobeslide12.jpg

WHAT IS THE SCALE??? from http://lambda.gsfc.nasa.gov/product/cobe/cobe_image_table.cfm

The zodiac is highly inclined compared to the galaxy, but these plots show it intersecting near galactic center. This is fortunate if true - we are unlikly to distinguish a Dyson shell where the background is very dense (too confusing) or very thin (radially outwards, fewer candidates).

attachment:Ellisfig58b.jpg

  • frequency = 299792 GHz-μm/λ

  • Ellis: Z zodiacal, C cirrus
  • B 60K 100 AU 1-sun Dyson, full pixel

Band(um)

12μm

25μm

60μm

70 μm

100μm

frequency

25 THz

12 THz

5 THz

4.3 THz

3 THz

Z nW/m2-sr

2800

1800

190

130

42

Z Jy-sr

1.12e7

1.5e7

3.8e6

3.0e6

1.4e6

C nW/m2-sr

4.8

2.3

3.2

4.5

13

C Jy-sr

1.9e4

1.9e4

6.4e4

1.1e5

4.3e5

B Jy-sr

4.8e7

1.7e11

3.5e12

3.9e12

4.0e12

B/(C+Z)

4.3

1.1e4

9.1e5

1.3e6

2.2e6

we will probably ignore zodiacal measurements

F=B/C

2.5e3

8.9e6

5.5e7

3.5e7

9.3e6

assume measurements in galactic plane

R IRAS pc

49

2900

7000

--

3000

R WISE pc

135

8000

--

--

--

R Spitzer pc

--

110000

--

54000

--

R JWST pc

1400

84000

--

--

--

CirrusZodiacal (last edited 2015-10-15 15:51:51 by KeithLofstrom)