Differences between revisions 2 and 10 (spanning 8 versions)
Revision 2 as of 2011-03-27 22:19:16
Size: 3148
Comment:
Revision 10 as of 2011-03-31 01:09:09
Size: 3152
Comment:
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:
If the Earth was perfectly round, and the poles were not inclined, arrays in the 12789km, 17280 second radius equatorial orbit would spend 2868 seconds per orbit shaded by the 6371km radius Earth ( $ = 17280 \times asin( 6371 / 12789 ) / 180^o $ ). If the Earth was perfectly round, and the poles were not inclined, arrays in the 12789km, 17280 second radius equatorial orbit would spend 2868 seconds per orbit shaded by the 6371km radius Earth ( $ = 17280 \times asin( 6371 / 12789 ) / 180^\circ ~ $ ).
Line 10: Line 10:
== Simple Round Earth == == Oblate Earth ==
Line 12: Line 12:
From the viewpoint of the sun, at the beginning of spring at the vernal equinox, the m288 orbit is in a plane tilted $ \phi = $ 23.439281° clockwise, to the right. The equations for this orbit are: The equatorial plane is tilted towards the sun by angle $ \theta_{eq} $ defined by:
Line 14: Line 14:
$ x_0 = R_{288} \sin( \phi ) \cos( \theta ) ~ ~ ~ , ~ ~ ~ y_0 = R_{288} \sin( \theta ) ~ ~ ~ and ~ ~ ~ z_0 = R_{288} \cos( \phi ) \cos( \theta ) $ $ \sin( \theta_{eq} ) = \sin( \beta ) \sin( \phi ) ~ ~ ~ $ see [Precession]
Line 16: Line 16:
Over the course of a year, this orbit is rotated clockwise around the z axis by the angle $ \beta $. The earth can be approximated as an elliptical disk, a projection of a ellipsoidal spheroid with an equatorial radius $ R_E $ = 6,378,137 meters and a polar radius $R_P$ = 6,356,752 meters. The edge of this elliptical disk follows the equation:
Line 18: Line 18:
$ x = x_0 \cos( \beta ) + y_0 \sin( \beta ) ~ ~ ~ , ~ ~ ~ y = -x_0 \sin( \beta ) + x_0 \cos( \beta ) ~ ~ ~ and ~ ~ ~ z= z_0 $ $ y = \sqrt{ ( R_E^2 - x^2 ) ( ( 1 - ( R_P / R_E )^2 ) \sin( \theta_{eq} )^2 + ( R_P / R_E )^2 } ~ ~ ~ $ see [TiltingOblate]
Line 20: Line 20:
The m288 orbit is a circle in the equatorial plane with a radius of $ R_{m288} $. This circle projects into the X,Z plane as
Line 21: Line 22:
$ y = \sin( \theta_{eq} ) \sqrt{ R_{m288}^2 - x^2 } $
Line 22: Line 24:
$ x = R_{288} \bigl( \sin( \phi ) \cos( \theta ) \cos( \beta ) + \sin( \theta ) \sin( \beta ) \bigr) $ Two of the four points where these y values are equal are the points were the orbit enters or leaves the eclipse, so:
Line 24: Line 26:
$ y = R_{288} \bigl( - \sin( \phi ) \cos( \theta ) \sin( \beta ) + \sin( \theta ) \cos( \beta ) \bigr) $ $ y_e = \sin( \theta_{eq} ) \sqrt{ R_{m288}^2 - x_e^2 } = \sqrt{ ( R_E^2 - x_e^2 ) ( ( 1 - ( R_P / R_E )^2 ) \sin( \theta_{eq} )^2 + ( R_P / R_E )^2 } $
Line 26: Line 28:
$ z = R_{288} \bigl( \cos( \phi ) \cos( \theta ) \bigr) $ Let's solve for $ x_e $:
Line 28: Line 30:
$ \sin( \theta_{eq} )^2 ( R_{m288}^2 - x_e^2 ) = ( R_E^2 - x_e^2 ) \left( ( 1 - ( R_P / R_E )^2 ) \sin( \theta_{eq} )^2 + ( R_P / R_E )^2 \right) $
Line 29: Line 32:
The orbit passes into and out of shadow where $ y > 0 $ ( to the back ) and x and z are on a projected circle with radius $ R_E = $ 6371 km
or $ x^2 + z^2 = R_E^2 $.
$ x_e^2 \left( \left( ( 1 - ( R_P / R_E )^2 ) \sin( \theta_{eq} )^2 + ( R_P / R_E )^2 \right) - \sin( \theta_{eq} )^2 \right) ~ = ~ R_E^2 \left( ( 1 - ( R_P / R_E )^2 ) \sin( \theta_{eq} )^2 + ( R_P / R_E )^2 \right) - \sin( \theta_{eq} )^2 R_{m288}^2 $
Line 32: Line 34:
$ \bigl( { { {R_E} \over {R_{288}} } bigr)^2 = \bigl( \sin( \phi ) \cos( \theta ) \cos( \beta ) + \sin( \theta ) \sin( \beta ) \bigr)^2
                                              + \bigl( \cos( \phi ) \cos( \theta ) \bigr)^2 $
$ x_e^2 \left( ( R_P / R_E )^2 ( 1 -\sin( \theta_{eq} )^2 ) \right) ~ = ~ R_P^2 - ( R_{m288}^2 + R_P^2 - R_E^2 ) \sin( \theta_{eq} )^2 $
Line 35: Line 36:
This equation can be solved analytically for $ cos( \theta ) $, but the result is very messy! Best to let Mr. Computer take care of it: $ \large x_e ~ = ~ \sqrt{ { R_P^2 - ( R_{m288}^2 + R_P^2 - R_E^2 ) \sin( \theta_{eq} )^2 } \over { ( R_P / R_E )^2 ( 1 -\sin( \theta_{eq} )^2 ) } } $

$ \Large x_e ~ = ~ R_E \sqrt{ { 1 - ( ( R_{m288}^2 + R_P^2 )/ R_E^2 ) - 1 ) \sin( \theta_{eq} )^2 } \over { 1 -\sin( \theta_{eq} )^2 } } ~ \approx 6378137 m \sqrt{ { 1 - 4.01377 \sin( \theta_{eq} )^2 } \over { 1 -\sin( \theta_{eq} )^2 } } ~ ~ ~ \sin( \theta_{eq} ) = \sin( \beta ) \sin( \phi ) $

The eclipse fraction $ F_E $ is simply:

$ F_E = 2 \arcsin( x_e / R_{m288} ) $
Line 38: Line 45:






== Oblate Earth ==

From a distant viewpoint in the equatorial plane, the earth can be approximated as an elliptical disk, with a semimajor X axis of 6378.1 kilometers, and a semiminor Z axis of 6356.8 km. The edge of this disk follows the equation:

$ 1 ~ = ~ \bigl( { {x_e} \over { 6378.1 km } } \bigr)^2 + \bigl( { {z_e} \over { 6356.8 km } } \bigr)^2 $

But the Sun is not on the equatorial plane, so from the Sun the Earth looks tilted, with the north end towards the front during northern summer, back in northern winter, to the left during northern fall, and to the right during northern spring. then the projection of the oblate spheroid onto the XZ plane is
MORE LATER

Earth Eclipse of Server Sky Arrays

If the Earth was perfectly round, and the poles were not inclined, arrays in the 12789km, 17280 second radius equatorial orbit would spend 2868 seconds per orbit shaded by the 6371km radius Earth ( = 17280 \times asin( 6371 / 12789 ) / 180^\circ ~ ).

In fact, the Earth has an equatorial radius of 6378.1 km, a polar radius of 6356.8 km, and an axial tilt of \phi = 23.439281° . The sun has an angular size of 0.53 degrees, and the Earth's atmosphere refracts light, meaning that the light dims gradually over approximately 30 seconds entering eclipse. For the rest of this analysis, we will ignore these gradual effects, pretend the sun is a point source at infinity, and calculate the hard cutoff time as a function of time of year.

The variable \beta represents the time of year in the northern hemisphere, from 0° in spring, 90° in summer, 180° in the fall, and 270° in winter.

Oblate Earth

The equatorial plane is tilted towards the sun by angle \theta_{eq} defined by:

\sin( \theta_{eq} ) = \sin( \beta ) \sin( \phi ) ~ ~ ~ see [Precession]

The earth can be approximated as an elliptical disk, a projection of a ellipsoidal spheroid with an equatorial radius R_E = 6,378,137 meters and a polar radius R_P = 6,356,752 meters. The edge of this elliptical disk follows the equation:

y = \sqrt{ ( R_E^2 - x^2 ) ( ( 1 - ( R_P / R_E )^2 ) \sin( \theta_{eq} )^2 + ( R_P / R_E )^2 } ~ ~ ~ see [TiltingOblate]

The m288 orbit is a circle in the equatorial plane with a radius of R_{m288} . This circle projects into the X,Z plane as

y = \sin( \theta_{eq} ) \sqrt{ R_{m288}^2 - x^2 }

Two of the four points where these y values are equal are the points were the orbit enters or leaves the eclipse, so:

y_e = \sin( \theta_{eq} ) \sqrt{ R_{m288}^2 - x_e^2 } = \sqrt{ ( R_E^2 - x_e^2 ) ( ( 1 - ( R_P / R_E )^2 ) \sin( \theta_{eq} )^2 + ( R_P / R_E )^2 }

Let's solve for x_e :

\sin( \theta_{eq} )^2 ( R_{m288}^2 - x_e^2 ) = ( R_E^2 - x_e^2 ) \left( ( 1 - ( R_P / R_E )^2 ) \sin( \theta_{eq} )^2 + ( R_P / R_E )^2 \right)

x_e^2 \left( \left( ( 1 - ( R_P / R_E )^2 ) \sin( \theta_{eq} )^2 + ( R_P / R_E )^2 \right) - \sin( \theta_{eq} )^2 \right) ~ = ~ R_E^2 \left( ( 1 - ( R_P / R_E )^2 ) \sin( \theta_{eq} )^2 + ( R_P / R_E )^2 \right) - \sin( \theta_{eq} )^2 R_{m288}^2

x_e^2 \left( ( R_P / R_E )^2 ( 1 -\sin( \theta_{eq} )^2 ) \right) ~ = ~ R_P^2 - ( R_{m288}^2 + R_P^2 - R_E^2 ) \sin( \theta_{eq} )^2

\large x_e ~ = ~ \sqrt{ { R_P^2 - ( R_{m288}^2 + R_P^2 - R_E^2 ) \sin( \theta_{eq} )^2 } \over { ( R_P / R_E )^2 ( 1 -\sin( \theta_{eq} )^2 ) } }

\Large x_e ~ = ~ R_E \sqrt{ { 1 - ( ( R_{m288}^2 + R_P^2 )/ R_E^2 ) - 1 ) \sin( \theta_{eq} )^2 } \over { 1 -\sin( \theta_{eq} )^2 } } ~ \approx 6378137 m \sqrt{ { 1 - 4.01377 \sin( \theta_{eq} )^2 } \over { 1 -\sin( \theta_{eq} )^2 } } ~ ~ ~ \sin( \theta_{eq} ) = \sin( \beta ) \sin( \phi )

The eclipse fraction F_E is simply:

F_E = 2 \arcsin( x_e / R_{m288} )

MORE LATER

Eclipse (last edited 2017-03-24 00:30:21 by KeithLofstrom)