Differences between revisions 12 and 13
Revision 12 as of 2015-10-13 17:42:29
Size: 3263
Comment:
Revision 13 as of 2015-10-13 20:22:39
Size: 3527
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:
These protons will implant themselves in the surface of any object passing through them. At a mere 25 km/s, the energy per proton is 3.6 electron volts - many will bounce off. Approaching the speed of light, the energy approaches multiples of the mass energy of the proton, 938 MeV/c^2^. That will damage solid structure to the implant depth. These protons will implant themselves in the surface of any object passing through them. At a mere 25 km/s, the energy per proton is 3.6 electron volts - many will bounce off. Approaching the speed of light, the energy approaches multiples of the mass energy of the proton, 938 MeV/c^2^. That will damage solid structure to the implant depth. The table below (from Janni 1966) shows stopping range in silicon.
Line 8: Line 8:
I don't know how much. A particle physicist can tell you how deep.

||<-7>'''Conditions in Local Cloud, 3e5 H/m^3^, 5e-22 kg/m^3^ as perceived from moving frame'''||
|| speed || v/c ||$1\over{c^2-v^2}$||energy||flux||Pressure|| ||
|| m/s || || || ||1/m^2^-s|| Pascals || ||
|| 25k || 8e-5 || 1 || 4 eV || 8e9 || || ||
|| 30k || 1e-4 || 1 || 5 eV || 9e9 || || ||
|| 100k || 3.3e-4 || 1 || 50 eV || 3e10 || || ||
|| 300k || 1e-3 || 1 || 500 eV || 9e10 || 14&mu; || ||
|| 1M || 3.3e-3 || 1 || 5 keV || 3e11 || 500&mu; || ||
|| 1.4M || 5e-3 || 1 || 10 keV || 4e11 || 1.4m || low energy ion implantation ||
|| 3M || 1e-2 || 1 || 50 keV || 9e11 || 14m || low energy van Allen belt ||
|| 4.2M || 1.4e-2 || 1 || 100 keV || 1.3e12 || 37m || 6000x more flux than 100 keV van Allen belt ||
|| 10M || 3.3e-2 || 1 || 500 keV || 3e12 || 0.5 || high energy ion implantation ||
|| 14M || 4.2e-2 || 1 || 1 MeV || 4e12 || 1.4 || 2e5 more flux than 10 MeV van Allen belt ||
|| 30M || 0.10 || 1.01 || 5 MeV || 9e12 || 14 || 7 W/m^2^ particle power ||
|| 100M || 0.33 || 1.13 || 50 MeV || 3e13 || 570 || ||
|| 200M || 0.67 || 1.80 || 380 MeV || 8e13 || 7K || highest energy van Allen belt, 1e12 more flux ||
|| 250M || 0.83 || 3.28 || 500 MeV || 1.4e14 || 26K || 11 KW/m^2^ particle power ||
||<-10>'''Conditions in Local Cloud, 3e5 H/m^3^, 5e-22 kg/m^3^ as perceived from moving frame'''||
|| speed || v/c ||$1\over{c^2-v^2}$||energy||flux||<2>Stopping Range est mm||Pressure|| ||
|| m/s || || || ||1/m^2^-s|| SiO2 || H2O || Pascals || ||
|| 25k || 8e-5 || 1 || 4 eV || 8e9 || || || || ||
|| 30k || 1e-4 || 1 || 5 eV || 9e9 || || || || ||
|| 100k || 3.3e-4 || 1 || 50 eV || 3e10 ||1.1e-4||2.8e-4|| || ||
|| 300k || 1e-3 || 1 || 500 eV || 9e10 ||3.3e-4||8.5e-4|| 14&mu; || ||
|| 1M || 3.3e-3 || 1 || 5 keV || 3e11 ||1.6e-3||4.1e-3|| 500&mu; || ||
|| 1.4M || 5e-3 || 1 || 10 keV || 4e11 ||2.5e-3||6.5e-3|| 1.4m || low energy ion implantation ||
|| 3M || 1e-2 || 1 || 50 keV || 9e11 ||8.0e-3||2.1e-2|| 14m || low energy van Allen belt ||
|| 4.2M || 0.014 || 1 || 100 keV || 1.3e12 ||1.5e-2|| 0.04 || 37m || 100 keV van Allen belt, 6000x more flux ||
|| 10M || 0.033 || 1 || 500 keV || 3e12 || 0.06 || 0.16 || 0.5 || high energy ion implantation ||
|| 14M || 0.042 || 1 || 1 MeV || 4e12 || 0.12 || 0.31 || 1.4 || 1 MeV van Allen belt, 2e5 more flux ||
|| 30M || 0.10 || 1.01 || 5 MeV || 9e12 || 0.44 || 1.15 || 14 || 7 W/m^2^ particle power ||
|| 100M || 0.33 || 1.13 || 50 MeV || 3e13 || 3.7 || 9.5 || 570 || ||
|| 200M || 0.67 || 1.80 || 380 MeV || 8e13 || || || 7K || highest energy van Allen belt, 1e12 more flux ||
|| 250M || 0.83 || 3.28 || 500 MeV || 1.4e14 || || || 26K || 11 KW/m^2^ particle power ||

Star Travel and the Interstellar Medium, particle effects

The interstellar medium - the coronal gas - forms a column between locations in space. The sun is 4 light years from one edge of a 60 light-year-across Local Cloud with a density of 0.3 hydrogens per cubic centimeter, or 3e5 H/m3, encountering the sun as it moves towards Scorpio at 25 km/s. Around that cloud is the Local Bubble, 300 LY across with a density of 50 H/m3. A light year is 9.5e15 meters, so for the first 4 light years in one direction, and more than 50 LY in the opposite direction, we encounter a column of hydrogen atoms with a density of about 1e21 H/m2-LY. That is the density of a layer of liquid water 30 nm thick per light year. 100 light years, 3 micrometers.

These protons will implant themselves in the surface of any object passing through them. At a mere 25 km/s, the energy per proton is 3.6 electron volts - many will bounce off. Approaching the speed of light, the energy approaches multiples of the mass energy of the proton, 938 MeV/c2. That will damage solid structure to the implant depth. The table below (from Janni 1966) shows stopping range in silicon.

Conditions in Local Cloud, 3e5 H/m3, 5e-22 kg/m3 as perceived from moving frame

speed

v/c

1\over{c^2-v^2}

energy

flux

Expected "%" after "2", got ""

Stopping Range est mm

Pressure

m/s

1/m2-s

SiO2

H2O

Pascals

25k

8e-5

1

4 eV

8e9

30k

1e-4

1

5 eV

9e9

100k

3.3e-4

1

50 eV

3e10

1.1e-4

2.8e-4

300k

1e-3

1

500 eV

9e10

3.3e-4

8.5e-4

14μ

1M

3.3e-3

1

5 keV

3e11

1.6e-3

4.1e-3

500μ

1.4M

5e-3

1

10 keV

4e11

2.5e-3

6.5e-3

1.4m

low energy ion implantation

3M

1e-2

1

50 keV

9e11

8.0e-3

2.1e-2

14m

low energy van Allen belt

4.2M

0.014

1

100 keV

1.3e12

1.5e-2

0.04

37m

100 keV van Allen belt, 6000x more flux

10M

0.033

1

500 keV

3e12

0.06

0.16

0.5

high energy ion implantation

14M

0.042

1

1 MeV

4e12

0.12

0.31

1.4

1 MeV van Allen belt, 2e5 more flux

30M

0.10

1.01

5 MeV

9e12

0.44

1.15

14

7 W/m2 particle power

100M

0.33

1.13

50 MeV

3e13

3.7

9.5

570

200M

0.67

1.80

380 MeV

8e13

7K

highest energy van Allen belt, 1e12 more flux

250M

0.83

3.28

500 MeV

1.4e14

26K

11 KW/m2 particle power

https://upload.wikimedia.org/wikipedia/commons/7/74/Local_Interstellar_Clouds_with_motion_arrows.jpg

InterstellarMedium (last edited 2015-10-14 02:24:00 by KeithLofstrom)