#format jsmath = Star Travel and the Interstellar Medium, particle effects = The [[ https://en.wikipedia.org/wiki/Interstellar_medium | interstellar medium ]] - the coronal gas - forms a column between locations in space. The sun is 4 light years inside one edge of a [[ https://en.wikipedia.org/wiki/Local_Interstellar_Cloud | 60 light-year-across Local Cloud]] with a density of [[ http://interstellar.jpl.nasa.gov/interstellar/probe/introduction/neighborhood.html | 0.3 hydrogens per cubic centimeter ]], or 3e5 H/m³, encountering the sun as it moves towards Scorpio at 25 km/s. Around that cloud is the [[https://en.wikipedia.org/wiki/Local_Bubble | Local Bubble]], 300 LY across with a density of 50 H/m³. A light year is 9.5e15 meters, so for the first 4 light years in one direction, and more than 50 LY in the opposite direction, we encounter a column of hydrogen atoms with a density of about 1e21 H/m²-LY. That is the density of a layer of liquid water 30 nm thick per light year. 100 light years, 3 micrometers. These protons will implant themselves in the surface of any object passing through them. At a mere 25 km/s, the energy per proton is 3.6 electron volts - many will bounce off. Approaching the speed of light, the energy approaches multiples of the mass energy of the proton, 938 MeV/c². That will damage solid structure to the implant depth. The table below (from Janni 1966) shows stopping range in silicon extrapolated by gram density to glass and water - perhaps poorly. The numbers below are estimates - real measurements needed! ||<-9>'''Conditions in Local Cloud, 3e5 H/m³, 5e-22 kg/m³ as perceived from moving frame'''|| || speed || v/c ||$1\over{c²-v²}$||energy||flux||<-2>Stopping Range est mm||Pressure|| || || m/s || || || ||1/m^2^-s||!SiO₂ || H₂O || Pascals || || || 25k || 8e-5 || 1 || 4 eV || 8e9 || || || || || || 30k || 1e-4 || 1 || 5 eV || 9e9 || || || || || || 100k || 3.3e-4 || 1 || 50 eV || 3e10 ||1.1e-3||2.8e-3|| || || || 300k || 1e-3 || 1 || 500 eV || 9e10 ||3.3e-3||8.5e-3|| 14μ || || || 1M || 3.3e-3 || 1 || 5 keV || 3e11 ||1.6e-2||4.1e-2|| 500μ || || || 1.4M || 5e-3 || 1 || 10 keV || 4e11 ||2.5e-2||6.5e-2|| 1.4m || low energy ion implantation || || 3M || 1e-2 || 1 || 50 keV || 9e11 || 0.08 || 0.2 || 14m || low energy van Allen belt || || 4.2M || 0.014 || 1 || 100 keV || 1.3e12 || 0.15 || 0.4 || 37m || 100 keV van Allen belt, 6000x more flux || || 10M || 0.033 || 1 || 500 keV || 3e12 || 0.6 || 1.6 || 0.5 || high energy ion implantation || || 14M || 0.042 || 1 || 1 MeV || 4e12 || 1.2 || 3.1 || 1.4 || 1 MeV van Allen belt, 2e5 more flux || || 30M || 0.10 || 1.01 || 5 MeV || 9e12 || 4.4 || 1.2 || 14 || 7 W/m^2^ particle power || || 100M || 0.33 || 1.13 || 50 MeV || 3e13 || 37 || 95 || 570 || || || 200M || 0.67 || 1.80 || 380 MeV || 8e13 || || || 7K || highest energy van Allen belt, 1e12 more flux || || 250M || 0.83 || 3.28 || 500 MeV || 1.4e14 || || || 26K || 11 KW/m^2^ particle power || {{https://upload.wikimedia.org/wikipedia/commons/7/74/Local_Interstellar_Clouds_with_motion_arrows.jpg | | width=600 }}{{https://www.spenvis.oma.be/help/background/soldam/sprcp.gif| |width=350}} . [[https://upload.wikimedia.org/wikipedia/commons/7/74/Local_Interstellar_Clouds_with_motion_arrows.jpg]] . grams/cm² → 10mm/density [[https://www.spenvis.oma.be/help/background/soldam/sprcp.gif]]