Size: 1343
Comment:
|
Size: 6149
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 3: | Line 3: |
---- MORE LATER add pointers to orbit discussions ----- == General Elliptical Orbits == |
|
Line 4: | Line 8: |
MORE LATER add pointers to orbit discussions | In the orbital plane, neglecting the $ J_2 $ spherical oblateness parameter : |
Line 6: | Line 10: |
|| symbol || || m288 || m360 || GEO || Moon || Earth || unit || || $ a $ || semimajor axis || 1,2788,866 || || 42,164,170 || || || meters || || $ r $ || radius || varies || varies || 42,164,170 || varies || varies || meters || || $ r_a $ || apogee radius || varies || varies || 42,164,170 || || meters || || $ r_p $ || perigee radius || varies || varies || 42,164,170 || meters || || $ T $ || sidereal period || |
|| gravitational parameter || $ \large \mu = a^3 \omega^2 = G M $ ||<|7-3>{{attachment:Anomaly.png|Anomaly|width=400}}|| || semimajor axis || $ \large a = \sqrt[3]{ \mu / \omega^2 } $ || || angular velocity || $ \large \omega = \sqrt{ \mu / a^3 } $ || || period || $ \large 2 \pi / \omega = 2 \pi \sqrt{ a^3/ \mu } $ || || eccentricity || $ \large e = ( r_a - r_p ) / ( r_a + r_p ) $ || || velocity || $ \large v_0 = \sqrt{ \mu / ( a (1 - e^2) ) } $ || || true anomaly<<BR>>orbit angle from focus|| $ \Large \theta $ || || eccentric anomaly<<BR>>ellipse center angle||$\large E = \Large { { e+\cos(\theta) } \over { 1+e\cos(\theta)} } $ || periapsis || apoapsis || || mean anomaly, || $ \large M = E - e \sin( E ) $|| | perigee (earth) || apogee (earth ) || || time from perigee || $ \large t = M / \omega $|| || perihelion ( sun ) || apohelion ( sun ) || || radius || $ \large r=a \Large{{1-e^2}\over{1+e\cos(\theta)}}$||->|| $ \large r_p =( 1-e )a $||$ \large r_a =( 1+e )a $|| || perpendicular velocity || $ \large v_{\perp} = v_0 ( 1 + e \cos( \theta ) ) $||->|| $ \large v_p =(1+e)v_0 $||$ \large v_a =(1-e)v_0 $|| || radial velocity || $ \large v_r = e v_0 \sin( \theta ) $|| || total velocity<<BR>>tangent to orbit || $ \Large v=\LARGE \sqrt{{{2\mu}\over{r}}-{{\mu}\over{a}}}$|| || orbit energy parameter || $ \large C_3 = \mu / a $|| |
Line 13: | Line 26: |
$ r = (1-e^2) a | ---- |
Line 15: | Line 28: |
----- | ---- |
Line 18: | Line 33: |
M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same position 5 times per day, for example, and makes approximately six orbits in the time the earth turns once. But not exactly. Because the earth orbits around the sun, the position of the sun makes a complete turn around the earth in one year, 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds | M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the Sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 14393.43227 seconds ---- 1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds ---- Note: The following table uses the classic formula $ \omega^2 a^3 = \mu $ from the books, and does not take into account the oblate spheroid shape of the Earth, which adds centripedal force for low orbits and thus should increase $ \omega $ and $ | C_3 | $. So please check these numbers. The eccentricities for the M orbits assume orbits mapped onto a 50km minor radius toroid. || symbol || || LEO 300Km || M288 || M360 || GEO || Moon || Earth || units || || $ \mu $ || gravitation param. || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 1.32712440E+20 || m^3^/s^2^ || || || relative to || earth || earth || earth || earth || earth || Sun || || || $ a_g $ || gravity || 8.938095E+00 || 2.437062E+00 || 1.911369E+00 || 2.242078E-01 || 2.697573E-03 || 5.930053E-03 || seconds || || $ T $ || sidereal period || 5431.009959 || 14393.432269 || 17270.543331 || 86164.099662 || 2360591.577436 || 31558149.763546 || seconds || || $ T_s $ || synodic period || 5431.944772 || 14400.000000 || 17820.000000 || 86400.000000 || 2551442.900000 || 31558149.763546 || seconds || || $ T/2\pi $ || Sidereal / 2pi || 864.372081 || 2290.785853 || 2748.692283 || 13713.440926 || 375698.721205 || 5022635.529703 || seconds || || $ \omega $ || Angular velocity || 1.15690919E-03 || 4.36531419E-04 || 3.63809367E-04 || 7.29211585E-05 || 2.66170722E-06 || 1.99098659E-07 || rad/sec || || || orbits/year || 5810.73318 || 2192.53822 || 1827.28185 || 366.25640 || 13.36879 || 1.00000 || || || $ a $ || semimajor axis || 6678000.00 || 12788970.60 || 14440980.32 || 42164169.86 || 384399000.00 || 149598261000.00 || meters || || $ R_a $ || apogee radius || 6678000.00 || 12838970.60 || 14490980.32 || 42164169.86 || 405696000.00 || 152098232000.00 || meters || || $ R_p $ || perigee radius || 6678000.00 || 12738970.60 || 14440980.32 || 42164169.86 || 363104000.00 || 147098290000.00 || meters || || $ e $ || eccentricity || 0.000000 || 0.001951 || 0.001728 || 0.000000 || 0.055401 || 0.016711 || || || $ V_0 $ || mean velocity || 7725.84 || 5582.79 || 5253.76 || 3074.66 || 1023.16 || 29784.81 || m/s || || $ V_a $ || apogee velocity || 7725.84 || 5571.90 || 5244.68 || 3074.66 || 966.47 || 29287.07 || m/s || || $ V_p $ || perigee velocity || 7725.84 || 5593.68 || 5262.84 || 3074.66 || 1079.84 || 30282.55 || m/s || || $ C_3 $ || orb. specific energy || -59688596.59 || -31167516.16 || -27602035.26 || -9453534.82 || -1036944.55 || -887125553.00 || J/kg || |
Near Circular Orbits
MORE LATER add pointers to orbit discussions
General Elliptical Orbits
In the orbital plane, neglecting the J_2 spherical oblateness parameter :
gravitational parameter |
\large \mu = a^3 \omega^2 = G M |
|||
semimajor axis |
\large a = \sqrt[3]{ \mu / \omega^2 } |
|||
angular velocity |
\large \omega = \sqrt{ \mu / a^3 } |
|||
period |
\large 2 \pi / \omega = 2 \pi \sqrt{ a^3/ \mu } |
|||
eccentricity |
\large e = ( r_a - r_p ) / ( r_a + r_p ) |
|||
velocity |
\large v_0 = \sqrt{ \mu / ( a (1 - e^2) ) } |
|||
true anomaly |
\Large \theta |
|||
eccentric anomaly |
\large E = \Large { { e+\cos(\theta) } \over { 1+e\cos(\theta)} } |
periapsis |
apoapsis |
|
mean anomaly, |
\large M = E - e \sin( E ) |
| perigee (earth) |
apogee (earth ) |
|
time from perigee |
\large t = M / \omega |
|
perihelion ( sun ) |
apohelion ( sun ) |
radius |
\large r=a \Large{{1-e^2}\over{1+e\cos(\theta)}} |
-> |
\large r_p =( 1-e )a |
\large r_a =( 1+e )a |
perpendicular velocity |
\large v_{\perp} = v_0 ( 1 + e \cos( \theta ) ) |
-> |
\large v_p =(1+e)v_0 |
\large v_a =(1-e)v_0 |
radial velocity |
\large v_r = e v_0 \sin( \theta ) |
|||
total velocity |
\Large v=\LARGE \sqrt{{{2\mu}\over{r}}-{{\mu}\over{a}}} |
|||
orbit energy parameter |
\large C_3 = \mu / a |
Periods of M orbits
M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the
Sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 14393.43227 seconds
1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds
Note: The following table uses the classic formula \omega^2 a^3 = \mu from the books, and does not take into account the oblate spheroid shape of the Earth, which adds centripedal force for low orbits and thus should increase \omega and | C_3 | . So please check these numbers.
The eccentricities for the M orbits assume orbits mapped onto a 50km minor radius toroid.
symbol |
|
LEO 300Km |
M288 |
M360 |
GEO |
Moon |
Earth |
units |
\mu |
gravitation param. |
3.98600448E+14 |
3.98600448E+14 |
3.98600448E+14 |
3.98600448E+14 |
3.98600448E+14 |
1.32712440E+20 |
m3/s2 |
|
relative to |
earth |
earth |
earth |
earth |
earth |
Sun |
|
a_g |
gravity |
8.938095E+00 |
2.437062E+00 |
1.911369E+00 |
2.242078E-01 |
2.697573E-03 |
5.930053E-03 |
seconds |
T |
sidereal period |
5431.009959 |
14393.432269 |
17270.543331 |
86164.099662 |
2360591.577436 |
31558149.763546 |
seconds |
T_s |
synodic period |
5431.944772 |
14400.000000 |
17820.000000 |
86400.000000 |
2551442.900000 |
31558149.763546 |
seconds |
T/2\pi |
Sidereal / 2pi |
864.372081 |
2290.785853 |
2748.692283 |
13713.440926 |
375698.721205 |
5022635.529703 |
seconds |
\omega |
Angular velocity |
1.15690919E-03 |
4.36531419E-04 |
3.63809367E-04 |
7.29211585E-05 |
2.66170722E-06 |
1.99098659E-07 |
rad/sec |
|
orbits/year |
5810.73318 |
2192.53822 |
1827.28185 |
366.25640 |
13.36879 |
1.00000 |
|
a |
semimajor axis |
6678000.00 |
12788970.60 |
14440980.32 |
42164169.86 |
384399000.00 |
149598261000.00 |
meters |
R_a |
apogee radius |
6678000.00 |
12838970.60 |
14490980.32 |
42164169.86 |
405696000.00 |
152098232000.00 |
meters |
R_p |
perigee radius |
6678000.00 |
12738970.60 |
14440980.32 |
42164169.86 |
363104000.00 |
147098290000.00 |
meters |
e |
eccentricity |
0.000000 |
0.001951 |
0.001728 |
0.000000 |
0.055401 |
0.016711 |
|
V_0 |
mean velocity |
7725.84 |
5582.79 |
5253.76 |
3074.66 |
1023.16 |
29784.81 |
m/s |
V_a |
apogee velocity |
7725.84 |
5571.90 |
5244.68 |
3074.66 |
966.47 |
29287.07 |
m/s |
V_p |
perigee velocity |
7725.84 |
5593.68 |
5262.84 |
3074.66 |
1079.84 |
30282.55 |
m/s |
C_3 |
orb. specific energy |
-59688596.59 |
-31167516.16 |
-27602035.26 |
-9453534.82 |
-1036944.55 |
-887125553.00 |
J/kg |