Differences between revisions 1 and 24 (spanning 23 versions)
Revision 1 as of 2011-03-31 19:44:52
Size: 1343
Comment:
Revision 24 as of 2011-04-01 23:55:11
Size: 7560
Comment:
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
----
MORE LATER add pointers to orbit discussions
-----
== General Elliptical Orbits ==
Line 4: Line 8:
MORE LATER add pointers to orbit discussions In the orbital plane, neglecting the $ J_2 $ spherical oblateness parameter :
Line 6: Line 10:
|| symbol || || m288 || m360 || GEO || Moon || Earth || unit ||
|| $ a $ || semimajor axis || 1,2788,866 || || 42,164,170 || || || meters ||
|| $ r $ || radius || varies || varies || 42,164,170 || varies || varies || meters ||
|| $ r_a $ || apogee radius || varies || varies || 42,164,170 || || meters ||
|| $ r_p $ || perigee radius || varies || varies || 42,164,170 || meters ||
|| $ T $ || sidereal period ||
|| gravitational parameter || $ \large \mu = a^3 \omega^2 = G M $ ||<|7-3>{{attachment:Anomaly.png|Anomaly|width=400}}||
|| semimajor axis || $ \large a = \sqrt[3]{ \mu / \omega^2 } $ ||
|| angular velocity || $ \large \omega = \sqrt{ \mu / a^3 } $ ||
|| sidereal period || $ \large T = 2\pi / \omega = 2\pi \sqrt{ a^3/\mu }$ ||
|| eccentricity || $ \large e = ( r_a - r_p ) / ( r_a + r_p ) $ ||
|| velocity || $ \large v_0 = \sqrt{ \mu / ( a (1 - e^2) ) } $ ||
|| true anomaly<<BR>>orbit angle from focus|| $ \Large \theta $ ||
|| eccentric anomaly<<BR>>ellipse center angle||$\large E = \Large { { e+\cos(\theta) } \over { 1+e\cos(\theta)}}$|| || periapsis || apoapsis ||
|| mean anomaly, || $ \large M = E - e \sin( E ) $||<)> earth || perigee || apogee ||
|| time from perigee || $ \large t = M / \omega $||<)> sun || perihelion || apohelion ||
|| radius || $\large r=a\Large{{1-e^2}\over{1+e\cos(\theta)}}$||<:>$\huge\rightarrow$||$ \large r_p =( 1-e )a $||$ \large r_a =( 1+e )a $||
|| perpendicular velocity || $\large v_{\perp}= v_0 ( 1+e \cos( \theta )) $||<:>$\huge\rightarrow$||$ \large v_p =(1+e)v_0 $||$ \large v_a =(1-e)v_0 $||
|| radial velocity || $ \large v_r = e v_0 \sin( \theta ) $||
|| total velocity<<BR>>tangent to orbit || $ \Large v=\LARGE \sqrt{{{2\mu}\over{r}}-{{\mu}\over{a}}}$||
|| orbit energy parameter || $ \large C_3 = \mu / a $||
Line 13: Line 26:
$ r = (1-e^2) a ----
=== Fictional Forces in Orbit ===
Line 15: Line 29:
-----
== Periods of M orbits ==
In the rotating frame of a circular orbit, counterclockwise viewed from above the orbital plane, the directions are
|| direction || unit vector || description ||
|| $ x $ || $ \vec i $ || Tangential to (along the line of) the orbit, in the orbital plane, pointing clockwise or westward ||
|| $ y $ || $ \vec j $ || Radially outwards from the center of rotation, in the orbital plane ||
|| $ z $ || $ \vec k $ || Perpendicular to the orbital plane, northwards ||
Line 18: Line 35:
M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same position 5 times per day, for example, and makes approximately six orbits in the time the earth turns once. But not exactly. Because the earth orbits around the sun, the position of the sun makes a complete turn around the earth in one year, 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds The rotation is expressed as $ \vec \Omega = \omega \hat k $, where $ \omega $ is the angular velocity of the orbit .
The radial vector $ \vec r $ is composed of $ \vec r = x \vec i + y \vec j + z \vec k $.

Coriolis acceleration: $ \Large \vec a_{Coriolis} = -2 \vec \Omega \times \dot { \vec r } $

Centrifugal acceleration: $ \Large \vec a_{Centrifugal} = - \vec \Omega \times \vec \Omega \times \vec r $


FROM HERE DOWN, WORK IN PROGRESS, NOT VERIFIED:

Centripedal (gravity) acceleration: $ \Large \vec a_{Centripedal} = \omega^2 ( 2 y \vec k - x \vec i - z \vec j ) $

In scalar equations:

   

$ \LARGE \ddot x = -2 \omega \dot y - \omega^2 x $

$ \LARGE \ddot y = 2 \omega \dot x + 3 \omega^2 y $

$ \LARGE \ddot z = -\omega^2 z $

----
=== Locus of Elliptical Orbit Position in Rotating Frame ===



----
=== Periods of M orbits ===

M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the

Sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 14393.43227 seconds

----
1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds

----
Note: The following table uses the classic formula $ \omega^2 a^3 = \mu $ from the books, and does not take into account the oblate spheroid shape of the Earth, which adds centripedal force for low orbits and thus should increase $ \omega $ and $ | C_3 | $. So please check these numbers.

The eccentricities for the M orbits assume orbits mapped onto a 50km minor radius toroid.

|| symbol || || LEO 300Km || M288 || M360 || GEO || Moon || Earth || units ||
|| $ \mu $ || gravitation param. ||<:-5> 3.98600448E+14 || 1.3271244E+20 || m^3^/s^2^ ||
|| ||<)> relative to || earth || earth || earth || earth || earth || Sun || ||
|| $ a_g $ || gravity || 8.938095E+00 || 2.437062E+00 || 1.911369E+00 || 2.242078E-01 || 2.697573E-03 || 5.930053E-03 || seconds ||
|| $ T $ || sidereal period || 5431.009959 || 14393.432269 || 17270.543331 || 86164.099662 || 2360591.57743 || 31558149.7635 || seconds ||
|| $ T_s $ || synodic period || 5431.944772 || 14400.000000 || 17820.000000 || 86400.000000 || 2551442.90000 || 31558149.7635 || seconds ||
|| $ T/2\pi $ || Sidereal / 2pi || 864.372081 || 2290.785853 || 2748.692283 || 13713.440926 || 375698.721205 || 5022635.5297 || seconds ||
|| $ \omega $ || Angular velocity || 1.1569092E-03 || 4.3653142E-04 || 3.6380937E-04 || 7.2921159E-05 || 2.6617072E-06 || 1.9909866E-07 || rad/sec ||
|| || orbits/year || 5810.73318 || 2192.53822 || 1827.28185 || 366.25640 || 13.36879 || 1.00000 || ||
|| $ a $ || semimajor axis || 6678000.00 || 12788970.60 || 14440980.32 || 42164169.86 || 384399000.00 || 149598261000 || meters ||
|| $ R_a $ || apogee radius || 6678000.00 || 12838970.60 || 14490980.32 || 42164169.86 || 405696000.00 || 152098232000 || meters ||
|| $ R_p $ || perigee radius || 6678000.00 || 12738970.60 || 14440980.32 || 42164169.86 || 363104000.00 || 147098290000 || meters ||
|| $ e $ || eccentricity || 0.000000 || 0.001951 || 0.001728 || 0.000000 || 0.055401 || 0.016711 || ||
|| $ V_0 $ || mean velocity || 7725.84 || 5582.79 || 5253.76 || 3074.66 || 1023.16 || 29784.81 || m/s ||
|| $ V_a $ || apogee velocity || 7725.84 || 5571.90 || 5244.68 || 3074.66 || 966.47 || 29287.07 || m/s ||
|| $ V_p $ || perigee velocity || 7725.84 || 5593.68 || 5262.84 || 3074.66 || 1079.84 || 30282.55 || m/s ||
|| $ C_3 $ || orb. specific energy || -59688596.59 || -31167516.16 || -27602035.26 || -9453534.82 || -1036944.55 || -887125553 || J/kg ||

Near Circular Orbits


MORE LATER add pointers to orbit discussions


General Elliptical Orbits

In the orbital plane, neglecting the J_2 spherical oblateness parameter :

gravitational parameter

\large \mu = a^3 \omega^2 = G M

Anomaly

semimajor axis

\large a = \sqrt[3]{ \mu / \omega^2 }

angular velocity

\large \omega = \sqrt{ \mu / a^3 }

sidereal period

\large T = 2\pi / \omega = 2\pi \sqrt{ a^3/\mu }

eccentricity

\large e = ( r_a - r_p ) / ( r_a + r_p )

velocity

\large v_0 = \sqrt{ \mu / ( a (1 - e^2) ) }

true anomaly
orbit angle from focus

\Large \theta

eccentric anomaly
ellipse center angle

\large E = \Large { { e+\cos(\theta) } \over { 1+e\cos(\theta)}}

periapsis

apoapsis

mean anomaly,

\large M = E - e \sin( E )

earth

perigee

apogee

time from perigee

\large t = M / \omega

sun

perihelion

apohelion

radius

\large r=a\Large{{1-e^2}\over{1+e\cos(\theta)}}

\huge\rightarrow

\large r_p =( 1-e )a

\large r_a =( 1+e )a

perpendicular velocity

\large v_{\perp}= v_0 ( 1+e \cos( \theta ))

\huge\rightarrow

\large v_p =(1+e)v_0

\large v_a =(1-e)v_0

radial velocity

\large v_r = e v_0 \sin( \theta )

total velocity
tangent to orbit

\Large v=\LARGE \sqrt{{{2\mu}\over{r}}-{{\mu}\over{a}}}

orbit energy parameter

\large C_3 = \mu / a


Fictional Forces in Orbit

In the rotating frame of a circular orbit, counterclockwise viewed from above the orbital plane, the directions are

direction

unit vector

description

x

\vec i

Tangential to (along the line of) the orbit, in the orbital plane, pointing clockwise or westward

y

\vec j

Radially outwards from the center of rotation, in the orbital plane

z

\vec k

Perpendicular to the orbital plane, northwards

The rotation is expressed as \vec \Omega = \omega \hat k , where \omega is the angular velocity of the orbit . The radial vector \vec r is composed of \vec r = x \vec i + y \vec j + z \vec k .

Coriolis acceleration: \Large \vec a_{Coriolis} = -2 \vec \Omega \times \dot { \vec r }

Centrifugal acceleration: \Large \vec a_{Centrifugal} = - \vec \Omega \times \vec \Omega \times \vec r

FROM HERE DOWN, WORK IN PROGRESS, NOT VERIFIED:

Centripedal (gravity) acceleration: \Large \vec a_{Centripedal} = \omega^2 ( 2 y \vec k - x \vec i - z \vec j )

In scalar equations:

\LARGE \ddot x = -2 \omega \dot y - \omega^2 x

\LARGE \ddot y = 2 \omega \dot x + 3 \omega^2 y

\LARGE \ddot z = -\omega^2 z


Locus of Elliptical Orbit Position in Rotating Frame


Periods of M orbits

M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the

Sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 14393.43227 seconds


1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds


Note: The following table uses the classic formula \omega^2 a^3 = \mu from the books, and does not take into account the oblate spheroid shape of the Earth, which adds centripedal force for low orbits and thus should increase \omega and | C_3 | . So please check these numbers.

The eccentricities for the M orbits assume orbits mapped onto a 50km minor radius toroid.

symbol

LEO 300Km

M288

M360

GEO

Moon

Earth

units

\mu

gravitation param.

3.98600448E+14

1.3271244E+20

m3/s2

relative to

earth

earth

earth

earth

earth

Sun

a_g

gravity

8.938095E+00

2.437062E+00

1.911369E+00

2.242078E-01

2.697573E-03

5.930053E-03

seconds

T

sidereal period

5431.009959

14393.432269

17270.543331

86164.099662

2360591.57743

31558149.7635

seconds

T_s

synodic period

5431.944772

14400.000000

17820.000000

86400.000000

2551442.90000

31558149.7635

seconds

T/2\pi

Sidereal / 2pi

864.372081

2290.785853

2748.692283

13713.440926

375698.721205

5022635.5297

seconds

\omega

Angular velocity

1.1569092E-03

4.3653142E-04

3.6380937E-04

7.2921159E-05

2.6617072E-06

1.9909866E-07

rad/sec

orbits/year

5810.73318

2192.53822

1827.28185

366.25640

13.36879

1.00000

a

semimajor axis

6678000.00

12788970.60

14440980.32

42164169.86

384399000.00

149598261000

meters

R_a

apogee radius

6678000.00

12838970.60

14490980.32

42164169.86

405696000.00

152098232000

meters

R_p

perigee radius

6678000.00

12738970.60

14440980.32

42164169.86

363104000.00

147098290000

meters

e

eccentricity

0.000000

0.001951

0.001728

0.000000

0.055401

0.016711

V_0

mean velocity

7725.84

5582.79

5253.76

3074.66

1023.16

29784.81

m/s

V_a

apogee velocity

7725.84

5571.90

5244.68

3074.66

966.47

29287.07

m/s

V_p

perigee velocity

7725.84

5593.68

5262.84

3074.66

1079.84

30282.55

m/s

C_3

orb. specific energy

-59688596.59

-31167516.16

-27602035.26

-9453534.82

-1036944.55

-887125553

J/kg

NearCircularOrbits (last edited 2022-09-14 00:16:43 by KeithLofstrom)