Size: 3625
Comment:
|
Size: 3769
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 15: | Line 15: |
M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same position 5 times per day, for example, and makes six synodic orbits in one synodic day. But not exactly. Because the earth orbits around the sun, the position of the sun makes a complete turn around the earth in one year, 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds | M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the |
Line 17: | Line 17: |
|| symbol || || LEO 300Km || M288 || M360 || GEO || Moon || Earth || units || || $ \mu $ || gravitational parameter || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 1.32712440E+20 || m^3^/s^2^ || || || relative to || earth || earth || earth || earth || earth || Sun || || || $ a_g $ || gravity || 8.938095E+00 || 2.437062E+00 || 1.911369E+00 || 2.242078E-01 || 2.697573E-03 || 5.930053E-03 || seconds || || $ T $ || sidereal period || 5431.009959 || 14393.432015 || 17270.542964 || 86164.090540 || 2360584.685000 || 31558149.763546 || seconds || || $ T_s $ || synodic period || 5445.879572 || 14400.000000 || 17820.000000 || 86400.000000 || 2551442.900000 || 31558149.763546 || seconds || || $ T/2\pi $ || Sidereal / 2pi || 864.372081 || 2290.785853 || 2748.692283 || 13713.440926 || 375698.721205 || 5022635.529703 || seconds || || $ \omega $ || Angular velocity || 1.15690919E-03 || 4.36531419E-04 || 3.63809367E-04 || 7.29211585E-05 || 2.66170722E-06 || 1.99098659E-07 || rad/sec || || || orbits/year || 5810.73318 || 2192.53822 || 1827.28185 || 366.25640 || 13.36879 || 1.00000 || || || $ R $ || semimajor axis || 6678000.00 || 12788970.60 || 14440980.32 || 42164169.86 || 384399000.00 || 149598261000.00 || meters || || $ R_a $ || apogee radius || 6678000.00 || varies || varies || 42164169.86 || 405696000.00 || 152098232000.00 || meters || || $ R_p $ || perigee radius || 6678000.00 || varies || varies || 42164169.86 || 363104000.00 || 147098290000.00 || meters || || $ e $ || eccentricity || 0.000000 || varies || varies || 0.000000 || 0.055401 || 0.016711 || || || $ V_0 $ || mean velocity || 7725.84 || 5582.79 || 5253.76 || 3074.66 || 1023.16 || 29784.81 || m/s || || $ V_a $ || apogee velocity || 7725.84 || varies || varies || 3074.66 || 966.47 || 29287.07 || m/s || || $ V_p $ || perigee velocity || 7725.84 || varies || varies || 3074.66 || 1079.84 || 30282.55 || m/s || || $ C_3 $ || orbit specific energy || -59688596.59 || -31167516.16 || -27602035.26 || -9453534.82 || -1036944.55 || -887125553.00 || J/kg || |
$ sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds || symbol || || LEO 300Km || M288 || M360 || GEO || Moon || Earth || units || || $ \mu $ || gravitation param. || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 1.32712440E+20 || m^3^/s^2^ || || || relative to || earth || earth || earth || earth || earth || Sun || || || $ a_g $ || gravity || 8.938095E+00 || 2.437062E+00 || 1.911369E+00 || 2.242078E-01 || 2.697573E-03 || 5.930053E-03 || seconds || || $ T $ || sidereal period || 5431.009959 || 14393.432269 || 17270.543331 || 86164.099662 || 2360591.577436 || 31558149.763546 || seconds || || $ T_s $ || synodic period || 5431.944772 || 14400.000000 || 17820.000000 || 86400.000000 || 2551442.900000 || 31558149.763546 || seconds || || $ T/2\pi $ || Sidereal / 2pi || 864.372081 || 2290.785853 || 2748.692283 || 13713.440926 || 375698.721205 || 5022635.529703 || seconds || || $ \omega $ || Angular velocity || 1.15690919E-03 || 4.36531419E-04 || 3.63809367E-04 || 7.29211585E-05 || 2.66170722E-06 || 1.99098659E-07 || rad/sec || || || orbits/year || 5810.73318 || 2192.53822 || 1827.28185 || 366.25640 || 13.36879 || 1.00000 || || || $ R $ || semimajor axis || 6678000.00 || 12788970.60 || 14440980.32 || 42164169.86 || 384399000.00 || 149598261000.00 || meters || || $ R_a $ || apogee radius || 6678000.00 || 12838970.60 || 14490980.32 || 42164169.86 || 405696000.00 || 152098232000.00 || meters || || $ R_p $ || perigee radius || 6678000.00 || 12738970.60 || 14440980.32 || 42164169.86 || 363104000.00 || 147098290000.00 || meters || || $ e $ || eccentricity || 0.000000 || 0.001951 || 0.001728 || 0.000000 || 0.055401 || 0.016711 || || || $ V_0 $ || mean velocity || 7725.84 || 5582.79 || 5253.76 || 3074.66 || 1023.16 || 29784.81 || m/s || || $ V_a $ || apogee velocity || 7725.84 || 5571.90 || 5244.68 || 3074.66 || 966.47 || 29287.07 || m/s || || $ V_p $ || perigee velocity || 7725.84 || 5593.68 || 5262.84 || 3074.66 || 1079.84 || 30282.55 || m/s || || $ C_3 $ || orb. specific energy || -59688596.59 || -31167516.16 || -27602035.26 || -9453534.82 || -1036944.55 || -887125553.00 || J/kg || |
Near Circular Orbits
MORE LATER add pointers to orbit discussions
$ r = (1-e^2) a
Periods of M orbits
M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the
$ sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) =
1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds
symbol |
|
LEO 300Km |
M288 |
M360 |
GEO |
Moon |
Earth |
units |
\mu |
gravitation param. |
3.98600448E+14 |
3.98600448E+14 |
3.98600448E+14 |
3.98600448E+14 |
3.98600448E+14 |
1.32712440E+20 |
m3/s2 |
|
relative to |
earth |
earth |
earth |
earth |
earth |
Sun |
|
a_g |
gravity |
8.938095E+00 |
2.437062E+00 |
1.911369E+00 |
2.242078E-01 |
2.697573E-03 |
5.930053E-03 |
seconds |
T |
sidereal period |
5431.009959 |
14393.432269 |
17270.543331 |
86164.099662 |
2360591.577436 |
31558149.763546 |
seconds |
T_s |
synodic period |
5431.944772 |
14400.000000 |
17820.000000 |
86400.000000 |
2551442.900000 |
31558149.763546 |
seconds |
T/2\pi |
Sidereal / 2pi |
864.372081 |
2290.785853 |
2748.692283 |
13713.440926 |
375698.721205 |
5022635.529703 |
seconds |
\omega |
Angular velocity |
1.15690919E-03 |
4.36531419E-04 |
3.63809367E-04 |
7.29211585E-05 |
2.66170722E-06 |
1.99098659E-07 |
rad/sec |
|
orbits/year |
5810.73318 |
2192.53822 |
1827.28185 |
366.25640 |
13.36879 |
1.00000 |
|
R |
semimajor axis |
6678000.00 |
12788970.60 |
14440980.32 |
42164169.86 |
384399000.00 |
149598261000.00 |
meters |
R_a |
apogee radius |
6678000.00 |
12838970.60 |
14490980.32 |
42164169.86 |
405696000.00 |
152098232000.00 |
meters |
R_p |
perigee radius |
6678000.00 |
12738970.60 |
14440980.32 |
42164169.86 |
363104000.00 |
147098290000.00 |
meters |
e |
eccentricity |
0.000000 |
0.001951 |
0.001728 |
0.000000 |
0.055401 |
0.016711 |
|
V_0 |
mean velocity |
7725.84 |
5582.79 |
5253.76 |
3074.66 |
1023.16 |
29784.81 |
m/s |
V_a |
apogee velocity |
7725.84 |
5571.90 |
5244.68 |
3074.66 |
966.47 |
29287.07 |
m/s |
V_p |
perigee velocity |
7725.84 |
5593.68 |
5262.84 |
3074.66 |
1079.84 |
30282.55 |
m/s |
C_3 |
orb. specific energy |
-59688596.59 |
-31167516.16 |
-27602035.26 |
-9453534.82 |
-1036944.55 |
-887125553.00 |
J/kg |