| Size: 3578 Comment:  | Size: 7419 Comment:  | 
| Deletions are marked like this. | Additions are marked like this. | 
| Line 3: | Line 3: | 
| ---- MORE LATER add pointers to orbit discussions ----- == General Elliptical Orbits == | |
| Line 4: | Line 8: | 
| MORE LATER add pointers to orbit discussions | In the orbital plane, neglecting the $ J_2 $ spherical oblateness parameter : || gravitational parameter || $ \large \mu = a^3 \omega^2 = G M $ ||<|7-3>{{attachment:Anomaly.png|Anomaly|width=400}}|| || semimajor axis || $ \large a = \sqrt[3]{ \mu / \omega^2 } $ || || angular velocity || $ \large \omega = \sqrt{ \mu / a^3 } $ || || sidereal period || $ \large T = 2\pi / \omega = 2\pi \sqrt{ a^3/\mu }$ || || eccentricity || $ \large e = ( r_a - r_p ) / ( r_a + r_p ) $ || || velocity || $ \large v_0 = \sqrt{ \mu / ( a (1 - e^2) ) } $ || || true anomaly<<BR>>orbit angle from focus|| $ \Large \theta $ || || eccentric anomaly<<BR>>ellipse center angle||$\large E = \Large { { e+\cos(\theta) } \over { 1+e\cos(\theta)}}$|| || periapsis || apoapsis || || mean anomaly, || $ \large M = E - e \sin( E ) $||<)> earth || perigee || apogee || || time from perigee || $ \large t = M / \omega $||<)> sun || perihelion || apohelion || || radius || $\large r=a\Large{{1-e^2}\over{1+e\cos(\theta)}}$||<:>$\huge\rightarrow$||$ \large r_p =( 1-e )a $||$ \large r_a =( 1+e )a $|| || perpendicular velocity || $\large v_{\perp}= v_0 ( 1+e \cos( \theta )) $||<:>$\huge\rightarrow$||$ \large v_p =(1+e)v_0 $||$ \large v_a =(1-e)v_0 $|| || radial velocity || $ \large v_r = e v_0 \sin( \theta ) $|| || total velocity<<BR>>tangent to orbit || $ \Large v=\LARGE \sqrt{{{2\mu}\over{r}}-{{\mu}\over{a}}}$|| || orbit energy parameter || $ \large C_3 = \mu / a $|| ---- === Fictional Forces in Orbit === In the rotating frame of a circular orbit, counterclockwise viewed from above the orbital plane, the directions are || direction || unit vector || description || || $ x $ || $ \vec i $ || Tangential to (along the line of) the orbit, in the orbital plane, pointing clockwise or westward || || $ y $ || $ \vec j $ || Radially outwards from the center of rotation, in the orbital plane || || $ z $ || $ \vec k $ || Perpendicular to the orbital plane, northwards || The rotation is expressed as $ \vec \Omega = \omega \hat k $, where $ \omega $ is the angular velocity of the orbit . The radial vector $ \vec r $ is composed of $ \vec r = x \vec i + y \vec j + z \vec k $. Coriolis acceleration: $ \Large \ddot{\vec r}_{Coriolis} = -2 \vec \Omega \times \dot { \vec r } $ Centrifugal acceleration: $ \Large \ddot{\vec r}_{Centrifugal} = - \vec \Omega \times \vec \Omega \times \vec r $ FROM HERE DOWN, WORK IN PROGRESS, NOT VERIFIED: Centripedal (gravity) acceleration: $ \Large \ddot{\vec r}_{Centripedal} = \omega^2 ( 2 y \vec k - x \vec i - z \vec j ) $ In scalar equations: $ \LARGE \ddot x = -2 \omega \dot y - \omega^2 x $ $ \LARGE \ddot y = 2 \omega \dot x + 3 \omega^2 y $ $ \LARGE \ddot z = -\omega^2 z $ ---- === Locus of Elliptical Orbit Position in Rotating Frame === | 
| Line 8: | Line 62: | 
| ---- === Periods of M orbits === | |
| Line 9: | Line 65: | 
| M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the | |
| Line 10: | Line 67: | 
| $ r = (1-e^2) a | Sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 14393.43227 seconds | 
| Line 12: | Line 69: | 
| ----- == Periods of M orbits == | ---- 1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds | 
| Line 15: | Line 72: | 
| M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same position 5 times per day, for example, and makes six synodic orbits in one synodic day. But not exactly. Because the earth orbits around the sun, the position of the sun makes a complete turn around the earth in one year, 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds | ---- Note: The following table uses the classic formula $ \omega^2 a^3 = \mu $ from the books, and does not take into account the oblate spheroid shape of the Earth, which adds centripedal force for low orbits and thus should increase $ \omega $ and $ | C_3 | $. So please check these numbers. | 
| Line 17: | Line 75: | 
| ||   symbol   ||                      || LEO 300Km      || M288           || M360           || GEO            || Moon           || Earth           ||   units   || || $ \mu $ || gravitation param. || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 3.98600448E+14 || 1.32712440E+20 || m^3^/s^2^ || || || relative to || earth || earth || earth || earth || earth || Sun || || || $ a_g $ || gravity || 8.938095E+00 || 2.437062E+00 || 1.911369E+00 || 2.242078E-01 || 2.697573E-03 || 5.930053E-03 || seconds || || $ T $ || sidereal period || 5431.009959 || 14393.432015 || 17270.542964 || 86164.090540 || 2360584.685000 || 31558149.763546 || seconds || || $ T_s $ || synodic period || 5445.879572 || 14400.000000 || 17820.000000 || 86400.000000 || 2551442.900000 || 31558149.763546 || seconds || || $ T/2\pi $ || Sidereal / 2pi || 864.372081 || 2290.785853 || 2748.692283 || 13713.440926 || 375698.721205 || 5022635.529703 || seconds || || $ \omega $ || Angular velocity || 1.15690919E-03 || 4.36531419E-04 || 3.63809367E-04 || 7.29211585E-05 || 2.66170722E-06 || 1.99098659E-07 || rad/sec || || || orbits/year || 5810.73318 || 2192.53822 || 1827.28185 || 366.25640 || 13.36879 || 1.00000 || || || $ R $ || semimajor axis || 6678000.00 || 12788970.60 || 14440980.32 || 42164169.86 || 384399000.00 || 149598261000.00 || meters || || $ R_a $ || apogee radius || 6678000.00 || 12838970.60 || 14490980.32 || 42164169.86 || 405696000.00 || 152098232000.00 || meters || || $ R_p $ || perigee radius || 6678000.00 || 12738970.60 || 14440980.32 || 42164169.86 || 363104000.00 || 147098290000.00 || meters || || $ e $ || eccentricity || 0.000000 || 0.001951 || 0.001728 || 0.000000 || 0.055401 || 0.016711 || || || $ V_0 $ || mean velocity || 7725.84 || 5582.79 || 5253.76 || 3074.66 || 1023.16 || 29784.81 || m/s || || $ V_a $ || apogee velocity || 7725.84 || 5571.90 || 5244.68 || 3074.66 || 966.47 || 29287.07 || m/s || || $ V_p $ || perigee velocity || 7725.84 || 5593.68 || 5262.84 || 3074.66 || 1079.84 || 30282.55 || m/s || || $ C_3 $ || orb. specific energy || -59688596.59 || -31167516.16 || -27602035.26 || -9453534.82 || -1036944.55 || -887125553.00 || J/kg || | The eccentricities for the M orbits assume orbits mapped onto a 50km minor radius toroid. | 
| Line 35: | Line 77: | 
| ||            ||                      || LEO 300Km     || M288          || M360          || GEO           || Moon          || Earth         ||   units   || || $ \mu $ || gravitation param. ||<:-5> 3.98600448e14 || 1.3271244e20 || m^3^/s^2^ || || ||<)> relative to || earth || earth || earth || earth || earth || Sun || || || $ a_g $ || gravity || 8.938095 || 2.437062 || 1.911369E || 0.02242078 || 0.002697573 || 0.005930053 || s || || $ T $ || sidereal period || 5431.00996 || 14393.4323 || 17270.5433 || 86164.100 || 2360591.577 || 31558149.76 || s || || $ T_s $ || synodic period || 5431.944772 || 14400 || 17820 || 86400 || 2551442.9 || 31558149.76 || s || || $ T/2\pi $ || Sidereal / 2pi || 864.37208 || 2290.78585 || 2748.69228 || 13713.44093 || 375698.7212 || 5022635.5297 || s || || $ \omega $ || Angular velocity || 1.15690e-03 || 4.36531e-04 || 3.63809e-04 || 7.29212e-05 || 2.66171e-06 || 1.99099e-07 || rad/s || || || orbits/year || 5810.7332 || 2192.5382 || 1827.2819 || 366.25640 || 13.36879 || 1.00000 || || || $ a $ || semimajor axis || 6678000 || 12788970.60 || 14440980.32 || 42164169.86 || 384399000 || 1.4959826e11 || m || || $ R_a $ || apogee radius || 6678000 || 12838970.60 || 14490980.32 || 42164169.86 || 405696000 || 1.5209823e11 || m || || $ R_p $ || perigee radius || 6678000 || 12738970.60 || 14440980.32 || 42164169.86 || 363104000 || 1.4709829e11 || m || || $ e $ || eccentricity || 0.000000 || 0.001951 || 0.001728 || 0.000000 || 0.055401 || 0.016711 || || || $ V_0 $ || mean velocity || 7725.84 || 5582.79 || 5253.76 || 3074.66 || 1023.16 || 29784.81 || m/s || || $ V_a $ || apogee velocity || 7725.84 || 5571.90 || 5244.68 || 3074.66 || 966.47 || 29287.07 || m/s || || $ V_p $ || perigee velocity || 7725.84 || 5593.68 || 5262.84 || 3074.66 || 1079.84 || 30282.55 || m/s || || $ C_3 $ || orb. specific energy || -59688597 || -31167516 || -27602035 || -9453535 || -1036945 || -887125553 || J/kg || | 
Near Circular Orbits
MORE LATER add pointers to orbit discussions
General Elliptical Orbits
In the orbital plane, neglecting the J_2 spherical oblateness parameter :
| gravitational parameter | \large \mu = a^3 \omega^2 = G M | 
 | ||
| semimajor axis | \large a = \sqrt[3]{ \mu / \omega^2 } | |||
| angular velocity | \large \omega = \sqrt{ \mu / a^3 } | |||
| sidereal period | \large T = 2\pi / \omega = 2\pi \sqrt{ a^3/\mu } | |||
| eccentricity | \large e = ( r_a - r_p ) / ( r_a + r_p ) | |||
| velocity | \large v_0 = \sqrt{ \mu / ( a (1 - e^2) ) } | |||
|  true anomaly | \Large \theta | |||
|  eccentric anomaly | \large E = \Large { { e+\cos(\theta) } \over { 1+e\cos(\theta)}} | 
 | periapsis | apoapsis | 
| mean anomaly, | \large M = E - e \sin( E ) | earth | perigee | apogee | 
| time from perigee | \large t = M / \omega | sun | perihelion | apohelion | 
| radius | \large r=a\Large{{1-e^2}\over{1+e\cos(\theta)}} | \huge\rightarrow | \large r_p =( 1-e )a | \large r_a =( 1+e )a | 
| perpendicular velocity | \large v_{\perp}= v_0 ( 1+e \cos( \theta )) | \huge\rightarrow | \large v_p =(1+e)v_0 | \large v_a =(1-e)v_0 | 
| radial velocity | \large v_r = e v_0 \sin( \theta ) | |||
|  total velocity | \Large v=\LARGE \sqrt{{{2\mu}\over{r}}-{{\mu}\over{a}}} | |||
| orbit energy parameter | \large C_3 = \mu / a | |||
Fictional Forces in Orbit
In the rotating frame of a circular orbit, counterclockwise viewed from above the orbital plane, the directions are
| direction | unit vector | description | 
| x | \vec i | Tangential to (along the line of) the orbit, in the orbital plane, pointing clockwise or westward | 
| y | \vec j | Radially outwards from the center of rotation, in the orbital plane | 
| z | \vec k | Perpendicular to the orbital plane, northwards | 
The rotation is expressed as \vec \Omega = \omega \hat k , where \omega is the angular velocity of the orbit . The radial vector \vec r is composed of \vec r = x \vec i + y \vec j + z \vec k .
Coriolis acceleration: \Large \ddot{\vec r}_{Coriolis} = -2 \vec \Omega \times \dot { \vec r }
Centrifugal acceleration: \Large \ddot{\vec r}_{Centrifugal} = - \vec \Omega \times \vec \Omega \times \vec r
FROM HERE DOWN, WORK IN PROGRESS, NOT VERIFIED:
Centripedal (gravity) acceleration: \Large \ddot{\vec r}_{Centripedal} = \omega^2 ( 2 y \vec k - x \vec i - z \vec j )
In scalar equations:
\LARGE \ddot x = -2 \omega \dot y - \omega^2 x
\LARGE \ddot y = 2 \omega \dot x + 3 \omega^2 y
\LARGE \ddot z = -\omega^2 z
Locus of Elliptical Orbit Position in Rotating Frame
Periods of M orbits
M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the
Sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 14393.43227 seconds
1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds
Note: The following table uses the classic formula \omega^2 a^3 = \mu from the books, and does not take into account the oblate spheroid shape of the Earth, which adds centripedal force for low orbits and thus should increase \omega and | C_3 | . So please check these numbers.
The eccentricities for the M orbits assume orbits mapped onto a 50km minor radius toroid.
| 
 | 
 | LEO 300Km | M288 | M360 | GEO | Moon | Earth | units | 
| \mu | gravitation param. | 3.98600448e14 | 1.3271244e20 | m3/s2 | ||||
| 
 | relative to | earth | earth | earth | earth | earth | Sun | 
 | 
| a_g | gravity | 8.938095 | 2.437062 | 1.911369E | 0.02242078 | 0.002697573 | 0.005930053 | s | 
| T | sidereal period | 5431.00996 | 14393.4323 | 17270.5433 | 86164.100 | 2360591.577 | 31558149.76 | s | 
| T_s | synodic period | 5431.944772 | 14400 | 17820 | 86400 | 2551442.9 | 31558149.76 | s | 
| T/2\pi | Sidereal / 2pi | 864.37208 | 2290.78585 | 2748.69228 | 13713.44093 | 375698.7212 | 5022635.5297 | s | 
| \omega | Angular velocity | 1.15690e-03 | 4.36531e-04 | 3.63809e-04 | 7.29212e-05 | 2.66171e-06 | 1.99099e-07 | rad/s | 
| 
 | orbits/year | 5810.7332 | 2192.5382 | 1827.2819 | 366.25640 | 13.36879 | 1.00000 | 
 | 
| a | semimajor axis | 6678000 | 12788970.60 | 14440980.32 | 42164169.86 | 384399000 | 1.4959826e11 | m | 
| R_a | apogee radius | 6678000 | 12838970.60 | 14490980.32 | 42164169.86 | 405696000 | 1.5209823e11 | m | 
| R_p | perigee radius | 6678000 | 12738970.60 | 14440980.32 | 42164169.86 | 363104000 | 1.4709829e11 | m | 
| e | eccentricity | 0.000000 | 0.001951 | 0.001728 | 0.000000 | 0.055401 | 0.016711 | 
 | 
| V_0 | mean velocity | 7725.84 | 5582.79 | 5253.76 | 3074.66 | 1023.16 | 29784.81 | m/s | 
| V_a | apogee velocity | 7725.84 | 5571.90 | 5244.68 | 3074.66 | 966.47 | 29287.07 | m/s | 
| V_p | perigee velocity | 7725.84 | 5593.68 | 5262.84 | 3074.66 | 1079.84 | 30282.55 | m/s | 
| C_3 | orb. specific energy | -59688597 | -31167516 | -27602035 | -9453535 | -1036945 | -887125553 | J/kg | 

