| 
  
   Size: 3769 
  
  Comment:  
 | 
  
   Size: 5988 
  
  Comment:  
 | 
| Deletions are marked like this. | Additions are marked like this. | 
| Line 3: | Line 3: | 
| ---- MORE LATER add pointers to orbit discussions ----- == General Elliptical Orbits ==  | 
|
| Line 4: | Line 8: | 
| MORE LATER add pointers to orbit discussions | In the orbital plane, neglecting the $ J_2 $ spherical oblateness parameter : || gravitational parameter || $ \mu = a^3 \omega^2 = G M $ || || semimajor axis || $ a = \sqrt[3]{ \mu / \omega^2 } $ || || angular velocity || $ \omega = \sqrt{ \mu / a^3 } $ || || period || $ 2 \pi / \omega = 2 \pi \sqrt{ a^3/ \mu } $ || || velocity || $ v_0 \sqrt{ \mu / a (1 - e^2) } $ || || eccentricity || $ e = ( r_a - r_p ) / ( r_a + r_p ) $ || || true anomaly, orbit angle from focus || $ \theta $ || || eccentric anomaly, ellipse center angle || $ E =( e+\cos(\theta) )/( 1+e\cos(\theta)) $ || || mean anomaly, || $ M = E - e \sin( E ) $ || || time from perigee || $ t = M / \omega $ || || radius || $ r = (1-e^2) a / ( 1 + e \cos( \theta ) ) $ || $ r_p = ( 1 - e ) a $ || $ r_a = ( 1 + e ) a $ || || perpendicular velocity || $ v_{\perp} = v_0 ( 1 + e \cos( \theta ) ) $ || $ v_p = ( 1 + e ) v_0 $ || $ v_a = ( 1 - e ) v_0 $ || || radial velocity || $ v_r = e v_0 \sin( \theta ) $ || periapsis ( general ) || apoapsis ( general ) || || total velocity ( tangent to orbit ) || $ v = \sqrt{ \mu \left( 2/r - 1/a \right)} $ || perigee (earth) || apogee (earth ) || || orbit energy parameter || $ C_3 = \mu / a $ || perihelion ( sun ) || apohelion ( sun ) || ----  | 
| Line 8: | Line 30: | 
$ r = (1-e^2) a -----  | 
---- | 
| Line 15: | Line 33: | 
| M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the | M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the | 
| Line 17: | Line 35: | 
| $ sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = | Sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 14393.43227 seconds | 
| Line 19: | Line 37: | 
| ---- 1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds  | 
|
| Line 20: | Line 40: | 
| 1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds | ---- Note: The following table uses the classic formula $ \omega^2 a^3 = \mu $ from the books, and does not take into account the oblate spheroid shape of the Earth, which adds centripedal force for low orbits and thus should increase $ \omega $ and $ | C_3 | $. So please check these numbers. The eccentricities for the M orbits assume orbits mapped onto a 50km minor radius toroid.  | 
| Line 31: | Line 54: | 
| || $ R $ || semimajor axis || 6678000.00 || 12788970.60 || 14440980.32 || 42164169.86 || 384399000.00 || 149598261000.00 || meters || | || $ a $ || semimajor axis || 6678000.00 || 12788970.60 || 14440980.32 || 42164169.86 || 384399000.00 || 149598261000.00 || meters || | 
Near Circular Orbits
MORE LATER add pointers to orbit discussions
General Elliptical Orbits
In the orbital plane, neglecting the J_2 spherical oblateness parameter :
gravitational parameter  | 
  \mu = a^3 \omega^2 = G M  | 
||
semimajor axis  | 
  a = \sqrt[3]{ \mu / \omega^2 }  | 
||
angular velocity  | 
  \omega = \sqrt{ \mu / a^3 }  | 
||
period  | 
  2 \pi / \omega = 2 \pi \sqrt{ a^3/ \mu }  | 
||
velocity  | 
  v_0 \sqrt{ \mu / a (1 - e^2) }  | 
||
eccentricity  | 
  e = ( r_a - r_p ) / ( r_a + r_p )  | 
||
true anomaly, orbit angle from focus  | 
  \theta  | 
||
eccentric anomaly, ellipse center angle  | 
  E =( e+\cos(\theta) )/( 1+e\cos(\theta))  | 
||
mean anomaly,  | 
  M = E - e \sin( E )  | 
||
time from perigee  | 
  t = M / \omega  | 
||
radius  | 
  r = (1-e^2) a / ( 1 + e \cos( \theta ) )  | 
  r_p = ( 1 - e ) a  | 
  r_a = ( 1 + e ) a  | 
perpendicular velocity  | 
  v_{\perp} = v_0 ( 1 + e \cos( \theta ) )  | 
  v_p = ( 1 + e ) v_0  | 
  v_a = ( 1 - e ) v_0  | 
radial velocity  | 
  v_r = e v_0 \sin( \theta )  | 
  periapsis ( general )  | 
  apoapsis ( general )  | 
total velocity ( tangent to orbit )  | 
  v = \sqrt{ \mu \left( 2/r - 1/a \right)}  | 
  perigee (earth)  | 
  apogee (earth )  | 
orbit energy parameter  | 
  C_3 = \mu / a  | 
  perihelion ( sun )  | 
  apohelion ( sun )  | 
Periods of M orbits
M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the
Sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 14393.43227 seconds
1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds
Note: The following table uses the classic formula \omega^2 a^3 = \mu from the books, and does not take into account the oblate spheroid shape of the Earth, which adds centripedal force for low orbits and thus should increase \omega and | C_3 | . So please check these numbers.
The eccentricities for the M orbits assume orbits mapped onto a 50km minor radius toroid.
symbol  | 
  
  | 
  LEO 300Km  | 
  M288  | 
  M360  | 
  GEO  | 
  Moon  | 
  Earth  | 
  units  | 
\mu  | 
  gravitation param.  | 
  3.98600448E+14  | 
  3.98600448E+14  | 
  3.98600448E+14  | 
  3.98600448E+14  | 
  3.98600448E+14  | 
  1.32712440E+20  | 
  m3/s2  | 
  | 
  relative to  | 
  earth  | 
  earth  | 
  earth  | 
  earth  | 
  earth  | 
  Sun  | 
  
  | 
a_g  | 
  gravity  | 
  8.938095E+00  | 
  2.437062E+00  | 
  1.911369E+00  | 
  2.242078E-01  | 
  2.697573E-03  | 
  5.930053E-03  | 
  seconds  | 
T  | 
  sidereal period  | 
  5431.009959  | 
  14393.432269  | 
  17270.543331  | 
  86164.099662  | 
  2360591.577436  | 
  31558149.763546  | 
  seconds  | 
T_s  | 
  synodic period  | 
  5431.944772  | 
  14400.000000  | 
  17820.000000  | 
  86400.000000  | 
  2551442.900000  | 
  31558149.763546  | 
  seconds  | 
T/2\pi  | 
  Sidereal / 2pi  | 
  864.372081  | 
  2290.785853  | 
  2748.692283  | 
  13713.440926  | 
  375698.721205  | 
  5022635.529703  | 
  seconds  | 
\omega  | 
  Angular velocity  | 
  1.15690919E-03  | 
  4.36531419E-04  | 
  3.63809367E-04  | 
  7.29211585E-05  | 
  2.66170722E-06  | 
  1.99098659E-07  | 
  rad/sec  | 
  | 
  orbits/year  | 
  5810.73318  | 
  2192.53822  | 
  1827.28185  | 
  366.25640  | 
  13.36879  | 
  1.00000  | 
  
  | 
a  | 
  semimajor axis  | 
  6678000.00  | 
  12788970.60  | 
  14440980.32  | 
  42164169.86  | 
  384399000.00  | 
  149598261000.00  | 
  meters  | 
R_a  | 
  apogee radius  | 
  6678000.00  | 
  12838970.60  | 
  14490980.32  | 
  42164169.86  | 
  405696000.00  | 
  152098232000.00  | 
  meters  | 
R_p  | 
  perigee radius  | 
  6678000.00  | 
  12738970.60  | 
  14440980.32  | 
  42164169.86  | 
  363104000.00  | 
  147098290000.00  | 
  meters  | 
e  | 
  eccentricity  | 
  0.000000  | 
  0.001951  | 
  0.001728  | 
  0.000000  | 
  0.055401  | 
  0.016711  | 
  
  | 
V_0  | 
  mean velocity  | 
  7725.84  | 
  5582.79  | 
  5253.76  | 
  3074.66  | 
  1023.16  | 
  29784.81  | 
  m/s  | 
V_a  | 
  apogee velocity  | 
  7725.84  | 
  5571.90  | 
  5244.68  | 
  3074.66  | 
  966.47  | 
  29287.07  | 
  m/s  | 
V_p  | 
  perigee velocity  | 
  7725.84  | 
  5593.68  | 
  5262.84  | 
  3074.66  | 
  1079.84  | 
  30282.55  | 
  m/s  | 
C_3  | 
  orb. specific energy  | 
  -59688596.59  | 
  -31167516.16  | 
  -27602035.26  | 
  -9453534.82  | 
  -1036944.55  | 
  -887125553.00  | 
  J/kg  | 
