12416
Comment:
|
12396
|
Deletions are marked like this. | Additions are marked like this. |
Line 18: | Line 18: |
|| time from perigee || $ \large t = M / \omega ? ? ? $||<)> sun || perihelion || apohelion || | || time from perigee || $ \large t = M / \omega $||<)> sun || perihelion || apohelion || |
Line 33: | Line 33: |
The rotation is expressed as $ \vec \Omega = \omega \hat k $, where $ \omega $ is the angular velocity of the orbit . | The rotation is expressed as $ \vec \Omega = \omega \vec k $, where $ \omega $ is the angular velocity of the orbit . |
Line 47: | Line 47: |
$ \LARGE \ddot x = -2 \omega \dot y - \omega^2 x $ | $ \LARGE \ddot x = 2 \omega \dot y $ |
Line 49: | Line 49: |
$ \LARGE \ddot y = 2 \omega \dot x + 3 \omega^2 y $ | $ \LARGE \ddot y = -2 \omega \dot x + 3 \omega^2 y $ |
Line 56: | Line 56: |
If $e$ is very small, we can assume $e^2 \approx 0 $. | For small eccentricities e, the deviation of the position of an object in a nearly circular eccentric orbit deviates from a ideal circular orbit as an ellipse, with a width of 4e and a height of 2e. This is difficult to compute analytically, but easy to show numerically. Here is a plot the normalized loci of the x,y position in the rotating frame, for various values of eccentricity: |
Line 58: | Line 58: |
$\Large {1\over{1+e\cos(\theta)}}={{1-e\cos(\theta)}\over{\left(1+e\cos(\theta)\right)\left(1-e\cos(\theta)\right)}}$ | {{attachment:locus01.png}} |
Line 60: | Line 60: |
$\Large ~ ~ ~ ~ ~ ~ ~ = {{1-e\cos(\theta)}\over{\left(1-e^2\cos^2(\theta)\right)}}$ | [[attachment:locus01.pl | perl data generator]] [[attachment:locus01.dat | locus data]] [[attachment:locus01.gp | gnuplot command file]] |
Line 62: | Line 64: |
$\large ~ ~ ~ ~ ~ ~ ~ \approx 1-e\cos(\theta) ~ ~ ~ $ ... since $ \large e^2 \approx 0 $ | If the whole orbit rotates east, clockwise when viewed from the north, then the object follows the locus above clockwise, with $ \theta = 0 $ at the bottom of the ellipsoid. |
Line 64: | Line 66: |
$\large E=\arccos\Large\left({{e+\cos(\theta)}\over{1+e\cos(\theta)}}\right)$ | The figure is very close to an ellipse for small e, but not exactly so. The program computes the radial distance rr, and the radial position xr and yr as a function of $\theta$. The program then computes the eccentric anomaly E, and the mean anomaly M. It then rotates the position vector back along the orbit, to approximately vertical, then subtracts the unit vector representing the elliptical orbit. So, it is approximately like watching an object in an elliptical orbit from a position in a circular orbit with the same semimajor axis. The deviation from an ellipse is quite small, until the eccentricity gets larger than 0.01 or so. Server sky orbits will have eccentricities of less than 0.002 . |
Line 66: | Line 69: |
$\large \cos( E ) = { \Large {{e+\cos(\theta)}\over{1+e\cos(\theta)}}} \large { \approx \left(e+\cos(\theta)\right)\left( 1-e\cos(\theta) \right) } $ | In the rotating frame, these eccentric loci describe the path of an object subject to fictitious forces. This provides an additional check on our equations for fictitious forces. |
Line 68: | Line 71: |
$ \large ~ ~ ~ ~ ~ ~ ~ \approx e + \cos(\theta) - e^2 \cos(\theta) - e \cos^2( \theta ) $ | ---- |
Line 70: | Line 73: |
$ \large ~ ~ ~ ~ ~ ~ ~ \approx \cos(\theta) + e \left( 1 - \cos^2( \theta ) \right) $ | ==== The math ==== |
Line 72: | Line 75: |
$ \Large \cos( E ) \approx \cos(\theta) + e\sin^2( \theta ) $ | $\large \dot{ \theta } = v_{\perp} / r = v_0 ( 1+e \cos( \theta )) / ( a (1-e^2) / {1+e\cos(\theta)} $ |
Line 74: | Line 77: |
$ \large \sin( E ) = \sqrt{ 1 - \cos^2( E ) } \approx \sqrt{ 1 - \left( \cos(\theta) + e \sin^2( \theta ) \right)^2 } $ | $\large \dot{ \theta } = ( \sqrt{ \mu / ( a (1 - e^2) ) } / a ( 1-e^2 ) ) ( 1 + e\cos( \theta ))^2 $ |
Line 76: | Line 79: |
$ \large ~ ~ ~ ~ ~ ~ ~ \approx \sqrt{ 1 - \left( \cos^2(\theta) + 2e \cos(\theta)\sin^2( \theta ) + e^2 \sin^4( \theta ) \right) } $ | $\large \dot{ \theta } = ( \sqrt{ \mu / ( a^3 (1 - e^2)^3 ) } ( 1 + 2 e \cos( \theta ) + e^2 \cos( \theta )^2 ) $ |
Line 78: | Line 81: |
$ \large ~ ~ ~ ~ ~ ~ ~ \approx \sqrt{ 1 - \cos^2(\theta) - 2e \cos(\theta)\sin^2( \theta ) } $ | for small perturbations, $ e^2 \approx 0 $, so |
Line 80: | Line 83: |
$ \large ~ ~ ~ ~ ~ ~ ~ \approx \sqrt{ \sin^2(\theta) \left( 1 - 2e \cos(\theta) \right) } $ | $\large \dot{ \theta } \approx ( \sqrt{ \mu / a^3 } ( 1 + 2 e \cos( \theta ) ) $ |
Line 82: | Line 85: |
$ \Large \sin( E ) \approx \sin(\theta ) \left( 1 - e \cos(\theta) \right)$ | In the rotating frame, $ \dot{ x } \approx a ( \dot{ \theta } - \omega ) $ where $ \omega \equiv \sqrt{ \mu / a^3 } $, so |
Line 84: | Line 87: |
$ \large M = E - e \sin( E ) \approx E - e \left( \sin(\theta ) \left( 1 - e \cos(\theta) \right) \right) $ | $\large \dot{ x } \approx a \sqrt{ \mu / a^3 } ( ( 1 + 2 e \cos( \theta ) - 1 ) $ |
Line 86: | Line 89: |
$ \large M \approx E - e \sin(\theta) + e^2 \cos(\theta) $ | $\large \dot{ x } \approx 2 e a \omega ( \cos( \theta ) ) $ |
Line 88: | Line 91: |
$ \Large M \approx E - e \sin(\theta) $ | Approximating $ \theta \approx \omega t $, we can integrate to get: |
Line 90: | Line 93: |
$ \large \cos( M ) \approx \cos( E - e \sin(\theta) ) = \cos( E ) \cos( e \sin(\theta) ) + \sin( E ) \sin( e \sin(\theta) ) $ | $\Large x \approx -2 e a \sin( \theta ) $ |
Line 92: | Line 95: |
$ \large \sin( e X ) \approx e X - (e X)^3 / 6 + (e X)^5 / 120 + ... \approx e X ~ ~ ~ $ higher order terms are < e^2^ | ---- |
Line 94: | Line 97: |
$ \large \cos( e X ) \approx 1 - (e X)^2 / 2 + (e X)^4 / 24 + ... \approx 1 ~ ~ ~ $ higher order terms are < $ e^2 $ | $\large \dot{ y } = v_r = e v_0 \sin( \theta ) \approx e a \omega \sin( \omega t ) $ Integrating: |
Line 96: | Line 99: |
$ \large \cos( M ) \approx \cos( E ) + e \sin( E ) \sin(\theta) ) $ | $\Large y \approx -e a \cos( \theta ) $ |
Line 98: | Line 101: |
$ \large \cos( M ) \approx \cos(\theta) + e\sin^2( \theta ) + e \left( \sin(\theta ) \left( 1 - e \cos(\theta) \right) \right) $ | For small $ e $, these equations in $ y $ and $ x $ describe the locus calculated above. |
Line 100: | Line 103: |
$ \Large \cos( M ) \approx \cos(\theta) + e\sin^2( \theta ) ( 2 - \cos(\theta) ) $ | ---- ==== Testing the Equations for Acceleration ==== |
Line 102: | Line 106: |
$ \large \sin( M ) \approx \sin( E - e \sin(\theta) ) = \sin( E ) \cos( e \sin(\theta) ) - \cos( E ) \sin ( e \sin(\theta) ) $ | $ \large \ddot x ~ ? = ~ \large 2 \omega \dot y $ |
Line 104: | Line 108: |
$ \large \sin( M ) \approx \sin( E ) - e \cos( E ) \sin(\theta) $ | $ \large \ddot x = { { d^2 } \over { dt^2 } } ( -2 e a \sin( \theta ) ) = { d \over { dt } } ( -2 e a \omega \cos( \theta ) ) = \Large 2 e a \omega^2 \sin ( \theta ) $ |
Line 106: | Line 110: |
$ \large \sin( M ) \approx \sin(\theta ) \left( 1 - e \cos(\theta) \right) - e \left( \cos(\theta) + e\sin^2( \theta )\right)\sin(\theta) $ | $ \large 2 \omega \dot y = 2 \omega { d \over { dt } } -e a \cos( \theta ) = \Large 2 e a \omega^2 \sin ( \theta ) $ . . . equal! |
Line 108: | Line 112: |
$ \large \sin( M ) \approx \sin(\theta) - e \sin(\theta)\cos(\theta) - e\sin(\theta)\cos(\theta) + e^2\sin^2(\theta) $ | $ \large \ddot y ~ ? = ~ \large -2 \omega \dot x + 3 \omega^2 y $ |
Line 110: | Line 114: |
$ \Large \sin( M ) \approx \sin(\theta)( 1 - 2 e \cos(\theta)) $ | $ \large \ddot y = { { d^2 } \over { dt^2 } } ( -e a \cos( \theta ) ) = { d \over { dt } } ( e a \omega \sin( \theta ) ) = \Large e a \omega^2 \cos( \theta ) $ |
Line 112: | Line 116: |
We want to find the locus of x and y, rotated to vertical by angle -M, and subtracting [ 0, a ] . | $ \large -2 \omega \dot x + 3 \omega^2 y = -2 \omega { d \over { dt } }( -2 e a \sin( \theta ) + 3 \omega^2 ( - e a \cos( \theta ) ) ) $ |
Line 114: | Line 118: |
$ \large r= a \Large{{1-e^2}\over{1+e\cos(\theta)}} \large \approx a ( 1 - e \cos(\theta) ) $ | $ \large ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = 4 e a \omega^2 \cos( \theta ) - 3 e a \omega^2 \cos( \theta ) = \Large e a \omega^2 \cos( \theta ) $ . . . equal! |
Line 116: | Line 120: |
$ \large x = r \cos( \theta ) \approx a ( 1 - e \cos(\theta) ) \cos( \theta ) $ $ \large y = r \sin( \theta ) \approx a ( 1 - e \cos(\theta) ) \sin( \theta ) $ Rotate the vector [ x , y ] by -M to : $ \large [ x', y' ] = \left( \begin{array}{cc} \cos( M ) & \sin( M ) \\ -\sin( M ) & \cos( M ) \end{array} \right) [ x, y ] $ $ \large x' = \cos( M ) x + \sin( M ) y $ $ \large x' \approx ( \cos(\theta) + e\sin^2( \theta ) ( 2 - \cos(\theta) ) ) ~ a ( 1 - e \cos(\theta) ) \cos( \theta ) ~ + ~ \sin(\theta)( 1 - 2 e \cos(\theta)) ~ a ( 1 - e \cos(\theta) ) \sin(\theta) $ $ \large x' / a \approx ( \cos(\theta) + 2e\sin^2( \theta ) - 2e\sin^2\cos(\theta) ) ( \cos( \theta ) - e \cos^2(\theta) ) ~ + ~ \sin^2(\theta)( 1 - 3 e \cos(\theta)) + e \cos^2(\theta) ) $ $ \large y' = \cos( M ) y - \sin( M ) x $ $ \large y' \approx ( \cos(\theta) + e\sin^2( \theta ) ( 2 - \cos(\theta) ) ) ~ a ( 1 - e \cos(\theta) ) \sin( \theta ) ~ - ~ \sin(\theta)( 1 - 2 e \cos(\theta)) ~ a ( 1 - e \cos(\theta) ) \cos(\theta) $ MORE LATER |
The acceleration equations work! |
Line 152: | Line 130: |
J2 speedup fraction $ = - 3 J_2 ( a_E / a )^2 = 3 \times 1.082626683e-3 \times (6378107m)^2 / a^2 = 1.321245688e11m^2 / a^2 $ |
|
Line 158: | Line 139: |
||$\omega'/\omega$||J2 speedup fraction|| 1.4813e-3|| 4.0389e-4|| 3.1677e-4 || 3.7158e-5 || 4.4707e-7 || 2e-17 || || | ||$\omega'/\omega$||J2 speedup fraction|| 2.9627e-3|| 8.0782e-4|| 6.3356e-4 || 7.4318e-5 || 8.9417e-7 || 2e-17 || || |
Line 178: | Line 159: |
[[ Lageos | LAGEOS 1 and LAGEOS 2 ]] are two slightly lower satellites in inclined but highly circular orbits. |
|
Line 181: | Line 164: |
. http://en.wikipedia.org/wiki/Rotating_reference_frame |
Near Circular Orbits
General Elliptical Orbits
In the orbital plane, neglecting the J_2 spherical oblateness parameter :
gravitational parameter |
\large \mu = a^3 \omega^2 = G M |
|||
semimajor axis |
\large a = \sqrt[3]{ \mu / \omega^2 } |
|||
angular velocity |
\large \omega = \sqrt{ \mu / a^3 } |
|||
J_2 Speedup factor |
\large \omega'/\omega = 1+1.5 |J_2| (R_{eq}/a)^2 |
|||
sidereal period |
\large T = 2\pi / \omega = 2\pi \sqrt{ a^3/\mu } |
|||
eccentricity |
\large e = ( r_a - r_p ) / ( r_a + r_p ) |
|||
velocity |
\large v_0 = \sqrt{ \mu / ( a (1 - e^2) ) } |
|||
true anomaly |
\Large \theta |
|||
eccentric anomaly |
\large E=\arccos\Large\left({{e+\cos(\theta)}\over{1+e\cos(\theta)}}\right) |
|
periapsis |
apoapsis |
mean anomaly, |
\large M = E - e \sin( E ) |
earth |
perigee |
apogee |
time from perigee |
\large t = M / \omega |
sun |
perihelion |
apohelion |
radius |
\large r=a\Large{{1-e^2}\over{1+e\cos(\theta)}} |
\huge\rightarrow |
\large r_p =( 1-e )a |
\large r_a =( 1+e )a |
perpendicular velocity |
\large v_{\perp}= v_0 ( 1+e \cos( \theta )) |
\huge\rightarrow |
\large v_p =(1+e)v_0 |
\large v_a =(1-e)v_0 |
radial velocity |
\large v_r = e v_0 \sin( \theta ) |
\huge\rightarrow |
0 |
0 |
total velocity |
\Large v=\LARGE \sqrt{{{2\mu}\over{r}}-{{\mu}\over{a}}} |
\huge\rightarrow |
\large v=v_p,~ r=r_p |
\large v=v_a,~ r=r_a |
orbit energy parameter |
\large C_3 = \mu / a = v_p v_a |
\large \mu = a v_p v_a ~ ~ ~ ~ ~ ~ ~ ~ ~ 2 a = r_p + r_a |
Fictional Forces in Orbit
In the rotating frame of a circular orbit, counterclockwise viewed from above the orbital plane, the directions are
direction |
unit vector |
description |
x |
\vec i |
Tangential to (along the line of) the orbit, in the orbital plane, pointing clockwise or westward |
y |
\vec j |
Radially outwards from the center of rotation, in the orbital plane |
z |
\vec k |
Perpendicular to the orbital plane, northwards |
The rotation is expressed as \vec \Omega = \omega \vec k , where \omega is the angular velocity of the orbit . The radial vector \vec r is composed of \vec r = x \vec i + y \vec j + z \vec k .
Coriolis acceleration: \LARGE \ddot{\vec r}_{Coriolis} = -2 \vec \Omega \times \dot { \vec r }
Centrifugal acceleration: \LARGE \ddot{\vec r}_{Centrifugal} = - \vec \Omega \times \vec \Omega \times \vec r
FROM HERE DOWN, WORK IN PROGRESS, NOT VERIFIED:
Centripedal (gravity) acceleration: \LARGE \ddot{\vec r}_{Centripedal} = \omega^2 ( 2 y \vec k - x \vec i - z \vec j )
Scalar equations:
\LARGE \ddot x = 2 \omega \dot y
\LARGE \ddot y = -2 \omega \dot x + 3 \omega^2 y
\LARGE \ddot z = -\omega^2 z
Locus of Elliptical Orbit Position in Rotating Frame
For small eccentricities e, the deviation of the position of an object in a nearly circular eccentric orbit deviates from a ideal circular orbit as an ellipse, with a width of 4e and a height of 2e. This is difficult to compute analytically, but easy to show numerically. Here is a plot the normalized loci of the x,y position in the rotating frame, for various values of eccentricity:
perl data generator locus data gnuplot command file
If the whole orbit rotates east, clockwise when viewed from the north, then the object follows the locus above clockwise, with \theta = 0 at the bottom of the ellipsoid.
The figure is very close to an ellipse for small e, but not exactly so. The program computes the radial distance rr, and the radial position xr and yr as a function of \theta. The program then computes the eccentric anomaly E, and the mean anomaly M. It then rotates the position vector back along the orbit, to approximately vertical, then subtracts the unit vector representing the elliptical orbit. So, it is approximately like watching an object in an elliptical orbit from a position in a circular orbit with the same semimajor axis. The deviation from an ellipse is quite small, until the eccentricity gets larger than 0.01 or so. Server sky orbits will have eccentricities of less than 0.002 .
In the rotating frame, these eccentric loci describe the path of an object subject to fictitious forces. This provides an additional check on our equations for fictitious forces.
The math
\large \dot{ \theta } = v_{\perp} / r = v_0 ( 1+e \cos( \theta )) / ( a (1-e^2) / {1+e\cos(\theta)}
\large \dot{ \theta } = ( \sqrt{ \mu / ( a (1 - e^2) ) } / a ( 1-e^2 ) ) ( 1 + e\cos( \theta ))^2
\large \dot{ \theta } = ( \sqrt{ \mu / ( a^3 (1 - e^2)^3 ) } ( 1 + 2 e \cos( \theta ) + e^2 \cos( \theta )^2 )
for small perturbations, e^2 \approx 0 , so
\large \dot{ \theta } \approx ( \sqrt{ \mu / a^3 } ( 1 + 2 e \cos( \theta ) )
In the rotating frame, \dot{ x } \approx a ( \dot{ \theta } - \omega ) where \omega \equiv \sqrt{ \mu / a^3 } , so
\large \dot{ x } \approx a \sqrt{ \mu / a^3 } ( ( 1 + 2 e \cos( \theta ) - 1 )
\large \dot{ x } \approx 2 e a \omega ( \cos( \theta ) )
Approximating \theta \approx \omega t , we can integrate to get:
\Large x \approx -2 e a \sin( \theta )
\large \dot{ y } = v_r = e v_0 \sin( \theta ) \approx e a \omega \sin( \omega t ) Integrating:
\Large y \approx -e a \cos( \theta )
For small e , these equations in y and x describe the locus calculated above.
Testing the Equations for Acceleration
\large \ddot x ~ ? = ~ \large 2 \omega \dot y
\large \ddot x = { { d^2 } \over { dt^2 } } ( -2 e a \sin( \theta ) ) = { d \over { dt } } ( -2 e a \omega \cos( \theta ) ) = \Large 2 e a \omega^2 \sin ( \theta )
\large 2 \omega \dot y = 2 \omega { d \over { dt } } -e a \cos( \theta ) = \Large 2 e a \omega^2 \sin ( \theta ) . . . equal!
\large \ddot y ~ ? = ~ \large -2 \omega \dot x + 3 \omega^2 y
\large \ddot y = { { d^2 } \over { dt^2 } } ( -e a \cos( \theta ) ) = { d \over { dt } } ( e a \omega \sin( \theta ) ) = \Large e a \omega^2 \cos( \theta )
\large -2 \omega \dot x + 3 \omega^2 y = -2 \omega { d \over { dt } }( -2 e a \sin( \theta ) + 3 \omega^2 ( - e a \cos( \theta ) ) )
\large ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = 4 e a \omega^2 \cos( \theta ) - 3 e a \omega^2 \cos( \theta ) = \Large e a \omega^2 \cos( \theta ) . . . equal!
The acceleration equations work!
Periods of M orbits
M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the
M288 sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 14393.43227 seconds
1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds.
J2 speedup fraction = - 3 J_2 ( a_E / a )^2 = 3 \times 1.082626683e-3 \times (6378107m)^2 / a^2 = 1.321245688e11m^2 / a^2
A Table of orbits
|
|
LEO 300Km |
M288 |
M360 |
GEO |
Moon |
Earth |
units |
\mu |
gravitation param. |
3.98600448e14 |
1.3271244e20 |
m3/s2 |
||||
|
relative to |
earth |
Sun |
|
||||
J_2 |
Oblate-ness |
-1.082626683e-3 earth radius = 6378000m |
-6e-7 |
|
||||
\omega'/\omega |
J2 speedup fraction |
2.9627e-3 |
8.0782e-4 |
6.3356e-4 |
7.4318e-5 |
8.9417e-7 |
2e-17 |
|
a_g |
gravity |
8.938095 |
2.437062 |
1.9113693 |
0.02242078 |
0.002697573 |
0.005930053 |
s |
T |
sidereal period |
5431.010 |
14393.4323 |
17270.5433 |
86164.100 |
2360591.577 |
31558149.76 |
s |
T_s |
synodic period |
5431.945 |
14400 |
17820 |
86400 |
2551442.9 |
31558149.76 |
s |
T/2\pi |
Sidereal / 2pi |
864.3721 |
2290.78585 |
2748.69228 |
13713.44093 |
375698.7212 |
5022635.5297 |
s |
\omega |
Angular velocity |
1.1569e-03 |
4.36531e-04 |
3.63809e-04 |
7.29212e-05 |
2.66171e-06 |
1.99099e-07 |
rad/s |
|
orbits/year |
5810.733 |
2192.5382 |
1827.2819 |
366.25640 |
13.36879 |
1.00000 |
|
a |
semimajor axis |
6678000 |
12788971 |
14440980 |
42164170 |
384399000 |
1.4959826e11 |
m |
R_a |
apogee radius |
6678000 |
12838976 |
14490980 |
42164170 |
405696000 |
1.5209823e11 |
m |
R_p |
perigee radius |
6678000 |
12738976 |
14440980 |
42164170 |
363104000 |
1.4709829e11 |
m |
e |
eccentricity |
0.000000 |
0.001951 |
0.001728 |
0.000000 |
0.055401 |
0.016711 |
|
V_0 |
mean velocity |
7725.84 |
5582.79 |
5253.76 |
3074.66 |
1023.16 |
29784.81 |
m/s |
V_a |
apogee velocity |
7725.84 |
5571.90 |
5244.68 |
3074.66 |
966.47 |
29287.07 |
m/s |
V_p |
perigee velocity |
7725.84 |
5593.68 |
5262.84 |
3074.66 |
1079.84 |
30282.55 |
m/s |
C_3 |
orb. specific energy |
-59688597 |
-31167516 |
-27602035 |
-9453535 |
-1036945 |
-887125553 |
J/kg |
Note: This table uses the classic formula \omega^2 a^3 = \mu , and does not take into account the oblate spheroid shape of the Earth, and many other perturbations. However, with the perturbations included, and with good data from ground stations and GPS to establish positions and velocities, we really can compute these numbers to this many decimal places. So while the numbers above are actually far less accurate, they represent the precision of the measurements we will someday compute.
The eccentricities for the M orbits assume orbits mapped onto a 50km minor radius toroid.
LAGEOS 1 and LAGEOS 2 are two slightly lower satellites in inclined but highly circular orbits.
REFS:
http://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion
http://en.wikipedia.org/wiki/Eccentric_anomaly ... where I got the picture, then modified it