Near Circular Orbits


MORE LATER add pointers to orbit discussions


General Elliptical Orbits

In the orbital plane, neglecting the J_2 spherical oblateness parameter :

gravitational parameter

\large \mu = a^3 \omega^2 = G M

Anomaly

semimajor axis

\large a = \sqrt[3]{ \mu / \omega^2 }

angular velocity

\large \omega = \sqrt{ \mu / a^3 }

sidereal period

\large T = 2\pi / \omega = 2\pi \sqrt{ a^3/\mu }

eccentricity

\large e = ( r_a - r_p ) / ( r_a + r_p )

velocity

\large v_0 = \sqrt{ \mu / ( a (1 - e^2) ) }

true anomaly
orbit angle from focus

\Large \theta

eccentric anomaly
ellipse center angle

\large E = \Large { { e+\cos(\theta) } \over { 1+e\cos(\theta)}}

periapsis

apoapsis

mean anomaly,

\large M = E - e \sin( E )

earth

perigee

apogee

time from perigee

\large t = M / \omega

sun

perihelion

apohelion

radius

\large r=a\Large{{1-e^2}\over{1+e\cos(\theta)}}

\huge\rightarrow

\large r_p =( 1-e )a

\large r_a =( 1+e )a

perpendicular velocity

\large v_{\perp}= v_0 ( 1+e \cos( \theta ))

\huge\rightarrow

\large v_p =(1+e)v_0

\large v_a =(1-e)v_0

radial velocity

\large v_r = e v_0 \sin( \theta )

total velocity
tangent to orbit

\Large v=\LARGE \sqrt{{{2\mu}\over{r}}-{{\mu}\over{a}}}

orbit energy parameter

\large C_3 = \mu / a


Fictional Forces in Orbit

In the rotating frame of a circular orbit, counterclockwise viewed from above the orbital plane, the directions are

direction

unit vector

description

x

\vec i

Tangential to (along the line of) the orbit, in the orbital plane, pointing clockwise or westward

y

\vec j

Radially outwards from the center of rotation, in the orbital plane

z

\vec k

Perpendicular to the orbital plane, northwards

The rotation is expressed as \vec \Omega = \omega \hat k , where \omega is the angular velocity of the orbit . The radial vector \vec r is composed of \vec r = x \vec i + y \vec j + z \vec k .

Coriolis acceleration: \Large \ddot{\vec r}_{Coriolis} = -2 \vec \Omega \times \dot { \vec r }

Centrifugal acceleration: \Large \ddot{\vec r}_{Centrifugal} = - \vec \Omega \times \vec \Omega \times \vec r

FROM HERE DOWN, WORK IN PROGRESS, NOT VERIFIED:

Centripedal (gravity) acceleration: \Large \ddot{\vec r}_{Centripedal} = \omega^2 ( 2 y \vec k - x \vec i - z \vec j )

In scalar equations:

\LARGE \ddot x = -2 \omega \dot y - \omega^2 x

\LARGE \ddot y = 2 \omega \dot x + 3 \omega^2 y

\LARGE \ddot z = -\omega^2 z


Locus of Elliptical Orbit Position in Rotating Frame


Periods of M orbits

M orbits describe the number of minutes an orbit takes travel once around the earth and return to the same position overhead. For server sky, these are integer fractions of a 1440 minute synodic day; this makes it easier to calculate the sky position given the orbital parameters and the time of day. the M288 orbit returns to the same apparent position 5 times per day, or 365.256...*5 times per year. That position moves around the earth 365.256...+1 times per year. So the total number of orbits per year, relative to the stars, is 365.256...*6+1 orbits per year. That is divided into the year length in seconds to yield the

Sidereal orbit time = ( 365.256... * 86400 ) / ( 365.256... * 6 + 1 ) = 86400 / ( 6 + 1/365.256... ) = 14393.43227 seconds


1 year = 365.256363004 days of 86,400 seconds, or 31558149.7635456 seconds


Note: The following table uses the classic formula \omega^2 a^3 = \mu from the books, and does not take into account the oblate spheroid shape of the Earth, which adds centripedal force for low orbits and thus should increase \omega and | C_3 | . So please check these numbers.

The eccentricities for the M orbits assume orbits mapped onto a 50km minor radius toroid.

symbol

LEO 300Km

M288

M360

GEO

Moon

Earth

units

\mu

gravitation param.

3.98600448E14

1.3271244E20

m3/s2

relative to

earth

earth

earth

earth

earth

Sun

a_g

gravity

8.938095

2.437062

1.911369E

0.02242078

0.002697573

0.005930053

s

T

sidereal period

5431.00996

14393.4323

17270.5433

86164.100

2360591.577

31558149.76

s

T_s

synodic period

5431.944772

14400

17820

86400

2551442.9

31558149.76

s

T/2\pi

Sidereal / 2pi

864.37208

2290.78585

2748.69228

13713.44093

375698.7212

5022635.5297

s

\omega

Angular velocity

1.15690E-03

4.36531E-04

3.63809E-04

7.29212E-05

2.66171E-06

1.99099E-07

rad/s

orbits/year

5810.7332

2192.5382

1827.2819

366.25640

13.36879

1.00000

a

semimajor axis

6678000

12788970.60

14440980.32

42164169.86

384399000

1.4959826E11

m

R_a

apogee radius

6678000

12838970.60

14490980.32

42164169.86

405696000

1.5209823E11

m

R_p

perigee radius

6678000

12738970.60

14440980.32

42164169.86

363104000

1.4709829E11

m

e

eccentricity

0.000000

0.001951

0.001728

0.000000

0.055401

0.016711

V_0

mean velocity

7725.84

5582.79

5253.76

3074.66

1023.16

29784.81

m/s

V_a

apogee velocity

7725.84

5571.90

5244.68

3074.66

966.47

29287.07

m/s

V_p

perigee velocity

7725.84

5593.68

5262.84

3074.66

1079.84

30282.55

m/s

C_3

orb. specific energy

-59688597

-31167516

-27602035

-9453535

-1036945

-887125553

J/kg