#format jsmath = Perigee Drag = === Approximating the drag on a decaying transfer orbit === ------ === What is the velocity and radius versus time for an elliptical orbit? === Given apogee $ r_a $ and perigee $ r_p $ and $ \mu_e = $ 3.986e14 m^3^/s^2^ and angle from perigee, true anomaly: $ \Large \theta $ || eccentricity: $ \large e = ( r_a - r_p ) / ( r_a + r_p ) $ || semimajor axis: $ \large s = ( r_a + r_p ) / 2 $ || || characteristic velocity: $ \large v_0 = \LARGE\sqrt{{\mu \over 2}\left({1 \over r_a}+{1 \over r_p}\right)} $ || eccentric anomaly (ellipse center angle): $\large E=\arccos\Large\left({{e+\cos(\theta)}\over{1+e\cos(\theta)}}\right)$ || || mean anomaly: $ \large M = E - e \sin( E ) $ || time from perigee: $ \large t = M / \omega $ || || radius: $ \large r=s\Large{{1-e^2}\over{1+e\cos(\theta)}}$ || perigee radius: $ \large r_p =( 1-e ) s $ || || perpendicular velocity: $\large v_{\perp}= v_0 ( 1+e \cos( \theta )) $ || perigee velocity: $ \large v_p =(1+e)v_0 $|| || total velocity, tangent to orbit: $\Large v=\LARGE \sqrt{{{2\mu}\over{r}}-{{\mu}\over{s}}} $ || angular momentum: $ \large L =\LARGE \sqrt{ { 2 \mu ~ r_a ~ r_p } \over { r_a + r_p } } $ || ( note: $a$ is more commonly used for the semimajor axis. I use $s$ to avoid confusion with apogee )