Perigee Drag
Approximating the drag on a decaying transfer orbit
What is the velocity and radius versus time for an elliptical orbit?
Given apogee e=
eccentricity: |
semimajor axis: |
characteristic velocity: |
eccentric anomaly (ellipse center angle): |
mean anomaly: |
time from perigee: \large t = M / \omega |
radius: \large r=s\Large{{1-e^2}\over{1+e\cos(\theta)}} |
perigee radius: \large r_p =( 1-e ) s |
perpendicular velocity: \large v_{\perp}= v_0 ( 1+e \cos( \theta )) |
perigee velocity: \large v_p =(1+e)v_0 |
total velocity, tangent to orbit: \Large v=\LARGE \sqrt{{{2\mu}\over{r}}-{{\mu}\over{s}}} |
angular momentum: \large L =\LARGE \sqrt{ { 2 \mu ~ r_a ~ r_p } \over { r_a + r_p } } |
( note: a is more commonly used for the semimajor axis. I use s to avoid confusion with apogee )