Processing Math: 50%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 1 and 8 (spanning 7 versions)
Revision 1 as of 2016-09-07 03:38:03
Size: 675
Comment:
Revision 8 as of 2016-09-07 18:35:19
Size: 3939
Comment:
Deletions are marked like this. Additions are marked like this.
Line 9: Line 9:
Transfer orbit from $ r_a $to$ r$ _p Perigee orbit at $ r_p $ : $ \large v_p = \LARGE { \sqrt{ \mu \over r_p } } $

Apogee orbit at $ r_a $ : $ \large v_a = \LARGE { \sqrt{ \mu \over r_a } } $

Transfer orbit from $ r_a $ to $ r_p $.

$ \large v_{0t} = \LARGE { \sqrt{ { \mu \over 2 } \left( { 1 \over r_a } + { 1 \over r_p } \right) } = \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } } ~ ~ ~ ~ \large e = \LARGE { { r_a - r_p } \over { r_a + r_p } } $

$ \large v_{pt} = ( 1 + e ) v_{0t} = \LARGE { \left( { 2 r_a } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } } \large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_a \over r_p } } $

$ \large v_{at} = ( 1 - e ) v_{0t} = \LARGE { \left( { 2 r_p } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } }\large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_p \over r_a } } $

$ \Delta v $ at perigee: $ \large { \Delta v_p = v_{pt} - v_p } $

$ \Delta v $ at apogee: $ \large { \Delta v_a = v_a - v_{at} } $

Total $ \large { \Delta v = ( v_{pt} - v_{at} ) - ( v_p - v_a ) } = \Large { { \sqrt{ { 2 \mu } \over { r_a + r_p } } } \Large { \left( \sqrt{ r_a \over r_p } -\sqrt{ r_p \over r_a } \right) } \large - ( v_p - v_a ) } $

$ ~~~~~~~ \large = { \sqrt{ { { \Large 2 } \over { \LARGE { { 1 \over v_a^2 } + { 1 \over v_p^2 } } } } } { \LARGE \left( { v_p \over v_a } - { v_a \over v_p } \right) } { \large - ( v_p - v_a ) } } \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { v_p^2 - v_a^2 } \over { v_p v_a } \right) { \large - ( v_p - v_a ) } } $

$ ~~~~~~~ \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { ( v_p + v_a ) ( v_p - v_a ) } \over { v_p v_a } \right) { \large - ( v_p - v_a ) } } \large = \LARGE { { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \large { ( v_p - v_a ) - ( v_p - v_a ) } } $

----
=== Total Thrust ===
$$ \LARGE { \Delta v = ( v_p - v_a ) } \left( \LARGE { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \LARGE - 1 \right) $$

The factor in large parentheses ranges from approximately 1.0 if $ v_p \approx v_a $ to $ \sqrt{2}-1 \approx 0.4142 $ if the velocity ratio is very large or small; escape velocity. The radius ratio is the square of the velocity ratio.
Line 12: Line 38:
== Spiral, continuous thrust === == Spiral, continuous thrust ==
Line 16: Line 42:
$ \Large v = \sqrt{ \mu / r } ~~~~~ r = \mu / v^2 ~~~~~ v = L / r ~~~~~ L = \mu / v ~~~~~ v = \mu / L ~~~~~ r = L^2 / \mu $ $ \large v = \sqrt{ \mu / r } ~~~~~ r = \mu / v^2 ~~~~~ v = L / r ~~~~~ L = \mu / v ~~~~~ v = \mu / L ~~~~~ r = L^2 / \mu $
Line 18: Line 44:
$ \Large d L = r d v = ( L^2 d v / \mu ) d v ~~~~~ d v = ( \mu / L^2 ) d L $ $ \large d L = r ~ d v = ( L^2 d v / \mu ) d v ~~~~~ d v = ( \mu / L^2 ) d L $
Line 22: Line 48:
$ \Large \Delta v = \int_{v_p}^{v_a} ( \mu / L^2 ) d L = \mu / L_p - \mu / L_a = v_p - v $ $ \large \Delta v = { \LARGE \int_{v_p}^{v_a} } ( \mu / L^2 ) d L = \mu / L_p - \mu / L_a = v_p - v_a $

-----

== Comparison ==

$ \mu = 1 $
|| $v_p$ || $v_a$ || hohmann || spiral || ratio ||
|| 1.0000 || 1.0000 || 0.0000 || 0.0000 || 1.0000 ||
|| 1.0010 || 1.0000 || 0.0010 || 0.0010 || 1.0000 ||
|| 1.0100 || 1.0000 || 0.0100 || 0.0100 || 1.0000 ||
|| 1.1000 || 1.0000 || 0.0998 || 0.1000 || 0.9977 ||
|| 1.3891 || 1.0000 || 0.3790 || 0.3891 || 0.9740 || 6378+250 -> 12789 M288 server sky ||
|| 2.5222 || 1.0000 || 1.2724 || 1.5222 || 0.8359 || 6378+250 -> 42165 geosynchronous ||
|| 7.6155 || 1.0000 || 3.8787 || 6.6155 || 0.5863 || 6378+250 -> 384400 Moon ||
|| 1.0000 || 0.0000 || 0.4142 || 1.0000 || 0.4142 || 6378+250 -> escape ||

[[ attachment:spiral-to-hohmann.ods | libreoffice spreadsheet ]]

To M288, radius 2R, a spiral orbit is only 2.6% extra deltaV from LEO. For GEO, only 20%. If a high Isp ion engine is cheap and available, use it!

Spiral vs Hohmann

Relative merits of a 2 impulse Hohmann versus a continuous thrust spiral

Simple analyses, does not account for depletion of propellant.


Hohmann, 2 impulse

Perigee orbit at rp : vp=rp 

Apogee orbit at ra : va=ra 

Transfer orbit from ra to rp.

v0t=21ra+1rp=2rarpra+rp    e=ra+rprarp 

vpt=(1+e)v0t=2rara+rp2rarpra+rp=2(ra+rp)rarp 

vat=(1e)v0t=2rpra+rp2rarpra+rp=2(ra+rp)rarp 

v at perigee: vp=vptvp 

v at apogee: va=vavat 

Total \large { \Delta v = ( v_{pt} - v_{at} ) - ( v_p - v_a ) } = \Large { { \sqrt{ { 2 \mu } \over { r_a + r_p } } } \Large { \left( \sqrt{ r_a \over r_p } -\sqrt{ r_p \over r_a } \right) } \large - ( v_p - v_a ) }

~~~~~~~ \large = { \sqrt{ { { \Large 2 } \over { \LARGE { { 1 \over v_a^2 } + { 1 \over v_p^2 } } } } } { \LARGE \left( { v_p \over v_a } - { v_a \over v_p } \right) } { \large - ( v_p - v_a ) } } \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { v_p^2 - v_a^2 } \over { v_p v_a } \right) { \large - ( v_p - v_a ) } }

~~~~~~~ \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { ( v_p + v_a ) ( v_p - v_a ) } \over { v_p v_a } \right) { \large - ( v_p - v_a ) } } \large = \LARGE { { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \large { ( v_p - v_a ) - ( v_p - v_a ) } }


Total Thrust

\LARGE { \Delta v = ( v_p - v_a ) } \left( \LARGE { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \LARGE - 1 \right)

The factor in large parentheses ranges from approximately 1.0 if v_p \approx v_a to \sqrt{2}-1 \approx 0.4142 if the velocity ratio is very large or small; escape velocity. The radius ratio is the square of the velocity ratio.


Spiral, continuous thrust

Thrust adds specific angular momentum L = r v .

\large v = \sqrt{ \mu / r } ~~~~~ r = \mu / v^2 ~~~~~ v = L / r ~~~~~ L = \mu / v ~~~~~ v = \mu / L ~~~~~ r = L^2 / \mu

\large d L = r ~ d v = ( L^2 d v / \mu ) d v ~~~~~ d v = ( \mu / L^2 ) d L

Integrate:

\large \Delta v = { \LARGE \int_{v_p}^{v_a} } ( \mu / L^2 ) d L = \mu / L_p - \mu / L_a = v_p - v_a


Comparison

\mu = 1

v_p

v_a

hohmann

spiral

ratio

1.0000

1.0000

0.0000

0.0000

1.0000

1.0010

1.0000

0.0010

0.0010

1.0000

1.0100

1.0000

0.0100

0.0100

1.0000

1.1000

1.0000

0.0998

0.1000

0.9977

1.3891

1.0000

0.3790

0.3891

0.9740

6378+250 -> 12789 M288 server sky

2.5222

1.0000

1.2724

1.5222

0.8359

6378+250 -> 42165 geosynchronous

7.6155

1.0000

3.8787

6.6155

0.5863

6378+250 -> 384400 Moon

1.0000

0.0000

0.4142

1.0000

0.4142

6378+250 -> escape

libreoffice spreadsheet

To M288, radius 2R, a spiral orbit is only 2.6% extra deltaV from LEO. For GEO, only 20%. If a high Isp ion engine is cheap and available, use it!

SpiralHohmann (last edited 2016-10-22 00:33:11 by KeithLofstrom)