Differences between revisions 4 and 30 (spanning 26 versions)
Revision 4 as of 2016-09-07 06:12:42
Size: 3676
Comment:
Revision 30 as of 2016-10-22 00:33:11
Size: 4277
Comment:
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:
Simple analyses, does not account for depletion of propellant. Simple analyses, does not directly account for mass change from depletion of propellant, residual atmospheric drag, or Earth's shadow blocking sunlight to presumably solar-powered electric thrusters.
Line 17: Line 17:
$ \large v_{pt} = ( 1 + e ) v_{0t} =  \LARGE { \left( { 2 r_a } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } } \large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_a \over r_p } } $ $ \large v_{pt} = ( 1 + e ) v_{0t} = \LARGE { \left( { 2 r_a } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } } \large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_a \over r_p } } $
Line 19: Line 19:
$ \large v_{at} = ( 1 - e ) v_{0t} =  \LARGE { \left( { 2 r_p } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } }\large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_p \over r_a } } $ $ \large v_{at} = ( 1 - e ) v_{0t} = \LARGE { \left( { 2 r_p } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } }\large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_p \over r_a } } $
Line 25: Line 25:
Total $ \large { \Delta v = ( v_{pt} - v_{at} ) - ( v_p - v_a ) } = \Large { { \sqrt{ { 2 \mu } \over { r_a + r_p } } } \Large { \left( \sqrt{ r_a \over r_p } -\sqrt{ r_p \over r_a } \right) } \large - ( v_p - v_a ) } $ Total $ \large { \Delta v = ( v_{pt} - v_{at} ) - ( v_p - v_a ) } = \Large { { \sqrt{ { 2 \mu } \over { r_a + r_p } } } \Large { \left( \sqrt{ r_a \over r_p } -\sqrt{ r_p \over r_a } \right) } \large - ( v_p - v_a ) } = { \sqrt{ { { \Large 2 } \over { \LARGE { { 1 \over v_a^2 } + { 1 \over v_p^2 } } } } } { \LARGE \left( { v_p \over v_a } - { v_a \over v_p } \right) } { \large - ( v_p - v_a ) } } $
$ \Large ~~~ = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { v_p^2 - v_a^2 } \over { v_a v_p } \right) { \large - ( v_p - v_a ) } } \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { ( v_p + v_a ) ( v_p - v_a ) } \over { v_a v_p } \right) { \large - ( v_p - v_a ) } } \large = \LARGE { { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \large { ( v_p - v_a ) - ( v_p - v_a ) } } $
Line 27: Line 28:
$ ~~~~~~~ \large = { \sqrt{ { { \Large 2 } \over { \LARGE { { 1 \over v_a^2 } + { 1 \over v_p^2 } } } } } { \LARGE \left( { v_p \over v_a } - { v_a \over v_p } \right) } { \large - ( v_p - v_a ) } } \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { v_p^2 - v_a^2 } \over { v_p v_a } \right) { \large - ( v_p - v_a ) } } $ === Total Thrust Hohmann 2 impulse ===
$$ \LARGE { \Delta v = ( v_p - v_a ) } \left( \LARGE { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \LARGE - 1 \right) $$
Line 29: Line 31:
$ ~~~~~~~ \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { ( v_p + v_a ) ( v_p - v_a ) } \over { v_p v_a } \right) { \large - ( v_p - v_a ) } } \large = \LARGE { { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \large { ( v_p - v_a ) - ( v_p - v_a ) } } $

Total $ \large { \Delta v = ( v_p - v_a ) } \left( \LARGE { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \Large - 1 \right) $
The factor in large parentheses ranges from approximately 1.0 if $ v_p \approx v_a $ to $ \sqrt{2}-1 \approx 0.4142 $ if the velocity ratio is very large or small; escape velocity. '''The radius ratio is the inverse square of the velocity ratio'''.
Line 44: Line 44:
$ \large \Delta v = { \LARGE \int_{v_p}^{v_a} } ( \mu / L^2 ) d L = \mu / L_p - \mu / L_a = v_p - v_a $ $ \large \Delta v = { \LARGE \int_{L_p}^{L_a} } ( \mu / L^2 ) d L = \mu / L_p - \mu / L_a = v_p - v_a $
Line 50: Line 50:
$ \mu = 1 $
|| $v_p$ || $v_a$ || hohmann || spiral || ratio ||
|| 1.0000 || 1.0000 || 0.0000 || 0.0000 || 1.0000 ||
|| 1.0010 || 1.0000 || 0.0010 || 0.0010 || 1.0000 ||
|| 1.0100 || 1.0000 || 0.0100 || 0.0100 || 1.0000 ||
|| 1.1000 || 1.0000 || 0.0998 || 0.1000 || 0.9977 ||
|| 1.3891 || 1.0000 || 0.3790 || 0.3891 || 0.9740 || 6378+250 -> 12789 M288 server sky ||
|| 2.5222 || 1.0000 || 1.2724 || 1.5222 || 0.8359 || 6378+250 -> 42165 geosynchronous ||
|| 7.6155 || 1.0000 || 3.8787 || 6.6155 || 0.5863 || 6378+250 -> 384400 Moon ||
|| 1.0000 || 0.0000 || 0.4142 || 1.0000 || 0.4142 || 6378+250 -> escape ||
$ \mu = 1 $ , normalized ( actually 3.9860044e14 m^2^/s^3^ for the Earth, neglecting J,,2,, oblateness effects)

|| $r_a/r_p$ || $v_p/v_a$ || Hohmann || spiral ||<-2> '''ratio''', Hohmann to spiral ||
|| 1.0000 || 1.0000 || 0.0000 || 0.0000 ||''undef''||
|| 1.0020 || 1.0010 || 0.0010 || 0.0010 || 1.0000 ||
|| 1.0201 || 1.0100 || 0.0100 || 0.0100 || 1.0000 ||
|| 1.2100 || 1.1000 || 0.0998 || 0.1000 || 0.9977 ||
|| 1.9296 || 1.3891 || 0.3790 || 0.3891 || 0.9740 || 6378+250 → 12789 M288 server sky ||
|| 6.3614 || 2.5222 || 1.2724 || 1.5222 || 0.8359 || 6378+250 → 42164 geosynchronous ||
|| 57.996 || 7.6155 || 3.8787 || 6.6155 || 0.5863 || 6378+250 → 384400 Moon ||
||$~~\infty$ ||$~~\infty$ || 0.4142 || 1.0000 || 0.4142 || 6378+250 → escape ||
Line 63: Line 64:
To M288, radius 2R, a spiral orbit is only 2.6% extra deltaV from LEO. For GEO, only 20%. If a high Isp ion engine is cheap and available, use it! To M288, radius 2R,,e,,, a spiral orbit is only 2.6% extra deltaV from LEO. For GEO, only 20%. If a high Isp ion engine is cheap and available, use it!

Spiral vs Hohmann

Relative merits of a 2 impulse Hohmann versus a continuous thrust spiral

Simple analyses, does not directly account for mass change from depletion of propellant, residual atmospheric drag, or Earth's shadow blocking sunlight to presumably solar-powered electric thrusters.


Hohmann, 2 impulse

Perigee orbit at r_p : \large v_p = \LARGE { \sqrt{ \mu \over r_p } }

Apogee orbit at r_a : \large v_a = \LARGE { \sqrt{ \mu \over r_a } }

Transfer orbit from r_a to r_p .

\large v_{0t} = \LARGE { \sqrt{ { \mu \over 2 } \left( { 1 \over r_a } + { 1 \over r_p } \right) } = \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } } ~ ~ ~ ~ \large e = \LARGE { { r_a - r_p } \over { r_a + r_p } }

\large v_{pt} = ( 1 + e ) v_{0t} = \LARGE { \left( { 2 r_a } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } } \large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_a \over r_p } }

\large v_{at} = ( 1 - e ) v_{0t} = \LARGE { \left( { 2 r_p } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } }\large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_p \over r_a } }

\Delta v at perigee: \large { \Delta v_p = v_{pt} - v_p }

\Delta v at apogee: \large { \Delta v_a = v_a - v_{at} }

Total \large { \Delta v = ( v_{pt} - v_{at} ) - ( v_p - v_a ) } = \Large { { \sqrt{ { 2 \mu } \over { r_a + r_p } } } \Large { \left( \sqrt{ r_a \over r_p } -\sqrt{ r_p \over r_a } \right) } \large - ( v_p - v_a ) } = { \sqrt{ { { \Large 2 } \over { \LARGE { { 1 \over v_a^2 } + { 1 \over v_p^2 } } } } } { \LARGE \left( { v_p \over v_a } - { v_a \over v_p } \right) } { \large - ( v_p - v_a ) } } \Large ~~~ = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { v_p^2 - v_a^2 } \over { v_a v_p } \right) { \large - ( v_p - v_a ) } } \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { ( v_p + v_a ) ( v_p - v_a ) } \over { v_a v_p } \right) { \large - ( v_p - v_a ) } } \large = \LARGE { { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \large { ( v_p - v_a ) - ( v_p - v_a ) } }

Total Thrust Hohmann 2 impulse

\LARGE { \Delta v = ( v_p - v_a ) } \left( \LARGE { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \LARGE - 1 \right)

The factor in large parentheses ranges from approximately 1.0 if v_p \approx v_a to \sqrt{2}-1 \approx 0.4142 if the velocity ratio is very large or small; escape velocity. The radius ratio is the inverse square of the velocity ratio.


Spiral, continuous thrust

Thrust adds specific angular momentum L = r v .

\large v = \sqrt{ \mu / r } ~~~~~ r = \mu / v^2 ~~~~~ v = L / r ~~~~~ L = \mu / v ~~~~~ v = \mu / L ~~~~~ r = L^2 / \mu

\large d L = r ~ d v = ( L^2 d v / \mu ) d v ~~~~~ d v = ( \mu / L^2 ) d L

Integrate:

\large \Delta v = { \LARGE \int_{L_p}^{L_a} } ( \mu / L^2 ) d L = \mu / L_p - \mu / L_a = v_p - v_a


Comparison

\mu = 1 , normalized ( actually 3.9860044e14 m2/s3 for the Earth, neglecting J2 oblateness effects)

r_a/r_p

v_p/v_a

Hohmann

spiral

ratio, Hohmann to spiral

1.0000

1.0000

0.0000

0.0000

undef

1.0020

1.0010

0.0010

0.0010

1.0000

1.0201

1.0100

0.0100

0.0100

1.0000

1.2100

1.1000

0.0998

0.1000

0.9977

1.9296

1.3891

0.3790

0.3891

0.9740

6378+250 → 12789 M288 server sky

6.3614

2.5222

1.2724

1.5222

0.8359

6378+250 → 42164 geosynchronous

57.996

7.6155

3.8787

6.6155

0.5863

6378+250 → 384400 Moon

~~\infty

~~\infty

0.4142

1.0000

0.4142

6378+250 → escape

libreoffice spreadsheet

To M288, radius ≈2Re, a spiral orbit is only 2.6% extra deltaV from LEO. For GEO, only 20%. If a high Isp ion engine is cheap and available, use it!

SpiralHohmann (last edited 2016-10-22 00:33:11 by KeithLofstrom)