Size: 3919
Comment:
|
Size: 3922
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 17: | Line 17: |
$ \large v_{pt} = ( 1 + e ) v_{0t} = \LARGE { \left( { 2 r_a } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } } \large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_a \over r_p } } $ | $ \large v_{pt} = ( 1 + e ) v_{0t} = \LARGE { \left( { 2 r_a } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } } \large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_a \over r_p } } $ |
Line 19: | Line 19: |
$ \large v_{at} = ( 1 - e ) v_{0t} = \LARGE { \left( { 2 r_p } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } }\large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_p \over r_a } } $ | $ \large v_{at} = ( 1 - e ) v_{0t} = \LARGE { \left( { 2 r_p } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } }\large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_p \over r_a } } $ |
Line 25: | Line 25: |
Total $ \large { \Delta v = ( v_{pt} - v_{at} ) - ( v_p - v_a ) } = \Large { { \sqrt{ { 2 \mu } \over { r_a + r_p } } } \Large { \left( \sqrt{ r_a \over r_p } -\sqrt{ r_p \over r_a } \right) } \large - ( v_p - v_a ) } $ | Total $ \large { \Delta v = ( v_{pt} - v_{at} ) - ( v_p - v_a ) } = \Large { { \sqrt{ { 2 \mu } \over { r_a + r_p } } } \Large { \left( \sqrt{ r_a \over r_p } -\sqrt{ r_p \over r_a } \right) } \large - ( v_p - v_a ) } = { \sqrt{ { { \Large 2 } \over { \LARGE { { 1 \over v_a^2 } + { 1 \over v_p^2 } } } } } { \LARGE \left( { v_p \over v_a } - { v_a \over v_p } \right) } { \large - ( v_p - v_a ) } } $ $ \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { v_p^2 - v_a^2 } \over { v_p v_a } \right) { \large - ( v_p - v_a ) } } \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { ( v_p + v_a ) ( v_p - v_a ) } \over { v_p v_a } \right) { \large - ( v_p - v_a ) } } \large = \LARGE { { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \large { ( v_p - v_a ) - ( v_p - v_a ) } } $ |
Line 27: | Line 28: |
$ ~~~~~~~ \large = { \sqrt{ { { \Large 2 } \over { \LARGE { { 1 \over v_a^2 } + { 1 \over v_p^2 } } } } } { \LARGE \left( { v_p \over v_a } - { v_a \over v_p } \right) } { \large - ( v_p - v_a ) } } \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { v_p^2 - v_a^2 } \over { v_p v_a } \right) { \large - ( v_p - v_a ) } } $ $ ~~~~~~~ \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { ( v_p + v_a ) ( v_p - v_a ) } \over { v_p v_a } \right) { \large - ( v_p - v_a ) } } \large = \LARGE { { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \large { ( v_p - v_a ) - ( v_p - v_a ) } } $ Total: |
---- === Total Thrust Hohmann 2 impulse === |
Spiral vs Hohmann
Relative merits of a 2 impulse Hohmann versus a continuous thrust spiral
Simple analyses, does not account for depletion of propellant.
Hohmann, 2 impulse
Perigee orbit at rp
Apogee orbit at ra
Transfer orbit from
2
1ra+1rp
=
2
rarpra+rp
e=ra+rpra−rp
2rara+rp
2
rarpra+rp
=
2
(ra+rp)rarp
2rpra+rp
2
rarpra+rp
=
2
(ra+rp)rarp
v
vp=vpt−vp
v
va=va−vat
Total v=(vpt−vat)−(vp−va)=
2
ra+rp
rpra−
rarp
−(vp−va)=
21va2+1vp2
vavp−vavp
−(vp−va)
2va2vp2vp2+va2
vpvavp2−va2
−(vp−va)=
2va2vp2vp2+va2
vpva(vp+va)(vp−va)
−(vp−va)=
vp2+va22(vp+va)2(vp−va)−(vp−va)
Total Thrust Hohmann 2 impulse


















The factor in large parentheses ranges from approximately 1.0 if va
2−1
0
4142
Spiral, continuous thrust
Thrust adds specific angular momentum
r r=
v2 v=L
r L=
v v=
L r=L2
)dv dv=(
L2)dL
Integrate:
v=
vpva(
L2)dL=
Lp−
La=vp−va
Comparison
=1
|
|
hohmann |
spiral |
ratio |
|
1.0000 |
1.0000 |
0.0000 |
0.0000 |
1.0000 |
|
1.0010 |
1.0000 |
0.0010 |
0.0010 |
1.0000 |
|
1.0100 |
1.0000 |
0.0100 |
0.0100 |
1.0000 |
|
1.1000 |
1.0000 |
0.0998 |
0.1000 |
0.9977 |
|
1.3891 |
1.0000 |
0.3790 |
0.3891 |
0.9740 |
6378+250 -> 12789 M288 server sky |
2.5222 |
1.0000 |
1.2724 |
1.5222 |
0.8359 |
6378+250 -> 42165 geosynchronous |
7.6155 |
1.0000 |
3.8787 |
6.6155 |
0.5863 |
6378+250 -> 384400 Moon |
1.0000 |
0.0000 |
0.4142 |
1.0000 |
0.4142 |
6378+250 -> escape |
To M288, radius 2R, a spiral orbit is only 2.6% extra deltaV from LEO. For GEO, only 20%. If a high Isp ion engine is cheap and available, use it!