#format jsmath = Spiral vs Hohmann = === Relative merits of a 2 impulse Hohmann versus a continuous thrust spiral === Simple analyses, does not directly account for mass change from depletion of propellant, residual atmospheric drag, or Earth's shadow blocking sunlight to presumably solar-powered electric thrusters. ----- == Hohmann, 2 impulse == Perigee orbit at $ r_p $ : $ \large v_p = \LARGE { \sqrt{ \mu \over r_p } } $ Apogee orbit at $ r_a $ : $ \large v_a = \LARGE { \sqrt{ \mu \over r_a } } $ Transfer orbit from $ r_a $ to $ r_p $. $ \large v_{0t} = \LARGE { \sqrt{ { \mu \over 2 } \left( { 1 \over r_a } + { 1 \over r_p } \right) } = \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } } ~ ~ ~ ~ \large e = \LARGE { { r_a - r_p } \over { r_a + r_p } } $ $ \large v_{pt} = ( 1 + e ) v_{0t} = \LARGE { \left( { 2 r_a } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } } \large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_a \over r_p } } $ $ \large v_{at} = ( 1 - e ) v_{0t} = \LARGE { \left( { 2 r_p } \over { r_a + r_p } \right) \sqrt{ { \mu \over 2 } \left( { r_a + r_p } \over { r_a r_p } \right) } }\large = \LARGE \sqrt{ { { 2 \mu } \over { ( r_a + r_p ) } } { r_p \over r_a } } $ $ \Delta v $ at perigee: $ \large { \Delta v_p = v_{pt} - v_p } $ $ \Delta v $ at apogee: $ \large { \Delta v_a = v_a - v_{at} } $ Total $ \large { \Delta v = ( v_{pt} - v_{at} ) - ( v_p - v_a ) } = \Large { { \sqrt{ { 2 \mu } \over { r_a + r_p } } } \Large { \left( \sqrt{ r_a \over r_p } -\sqrt{ r_p \over r_a } \right) } \large - ( v_p - v_a ) } = { \sqrt{ { { \Large 2 } \over { \LARGE { { 1 \over v_a^2 } + { 1 \over v_p^2 } } } } } { \LARGE \left( { v_p \over v_a } - { v_a \over v_p } \right) } { \large - ( v_p - v_a ) } } $ $ \Large ~~~ = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { v_p^2 - v_a^2 } \over { v_a v_p } \right) { \large - ( v_p - v_a ) } } \Large = \LARGE { \sqrt{ { { 2 v_a^2 v_p^2 } \over { v_p^2 + v_a^2 } } } \left( { ( v_p + v_a ) ( v_p - v_a ) } \over { v_a v_p } \right) { \large - ( v_p - v_a ) } } \large = \LARGE { { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \large { ( v_p - v_a ) - ( v_p - v_a ) } } $ === Total Thrust Hohmann 2 impulse === $$ \LARGE { \Delta v = ( v_p - v_a ) } \left( \LARGE { \sqrt{ { 2 ( v_p + v_a )^2 } \over { v_p^2 + v_a^2 } } } \LARGE - 1 \right) $$ The factor in large parentheses ranges from approximately 1.0 if $ v_p \approx v_a $ to $ \sqrt{2}-1 \approx 0.4142 $ if the velocity ratio is very large or small; escape velocity. '''The radius ratio is the inverse square of the velocity ratio'''. ----- == Spiral, continuous thrust == Thrust adds specific angular momentum $ L = r v $. $ \large v = \sqrt{ \mu / r } ~~~~~ r = \mu / v^2 ~~~~~ v = L / r ~~~~~ L = \mu / v ~~~~~ v = \mu / L ~~~~~ r = L^2 / \mu $ $ \large d L = r ~ d v = ( L^2 d v / \mu ) d v ~~~~~ d v = ( \mu / L^2 ) d L $ Integrate: $ \large \Delta v = { \LARGE \int_{L_p}^{L_a} } ( \mu / L^2 ) d L = \mu / L_p - \mu / L_a = v_p - v_a $ ----- == Comparison == $ \mu = 1 $ , normalized ( actually 3.9860044e14 m^2^/s^3^ for the Earth, neglecting J,,2,, oblateness effects) || $r_a/r_p$ || $v_p/v_a$ || Hohmann || spiral ||<-2> '''ratio''', Hohmann to spiral || || 1.0000 || 1.0000 || 0.0000 || 0.0000 ||''undef''|| || 1.0020 || 1.0010 || 0.0010 || 0.0010 || 1.0000 || || 1.0201 || 1.0100 || 0.0100 || 0.0100 || 1.0000 || || 1.2100 || 1.1000 || 0.0998 || 0.1000 || 0.9977 || || 1.9296 || 1.3891 || 0.3790 || 0.3891 || 0.9740 || 6378+250 → 12789 M288 server sky || || 6.3614 || 2.5222 || 1.2724 || 1.5222 || 0.8359 || 6378+250 → 42164 geosynchronous || || 57.996 || 7.6155 || 3.8787 || 6.6155 || 0.5863 || 6378+250 → 384400 Moon || ||$~~\infty$ ||$~~\infty$ || 0.4142 || 1.0000 || 0.4142 || 6378+250 → escape || [[ attachment:spiral-to-hohmann.ods | libreoffice spreadsheet ]] To M288, radius ≈2R,,e,,, a spiral orbit is only 2.6% extra deltaV from LEO. For GEO, only 20%. If a high Isp ion engine is cheap and available, use it!