Some wisdom:
This is a LaTeX formula: \sin(2x) = 2\sin(x)\cos(x) . More LaTeX: \cos(2x)=\cos^2(x) - \sin^2(x). Even more: \frac{\partial}{\partial x}\sin(x) = \cos(x).
a^2+b^2=c^2 \sin(2x)=2\sin(x)\cos(x)
\Gamma^{\mu\nu}_{\alpha} = \partial g
Oh I see, so you say \vec{F}= m \cdot \vec{a} ?
A formula apart:
\oint_{\partial B}f(z)dz=\sum_{a\in B}2\pi i Res_a(f(z))
Can we still edit on the new host?
God, I love this jsMath stuff... It's absolutely lovely \overline{T}_{ij} = a_{ik}T_{kl}(a^T)_{lj}. B0rk.
\frac {dQ_x}{dt} = \left(\frac{U-\frac{Q}{C}}{R}\right)
We have
\int \sin(x^2) = {{\sqrt{\pi}\,\left(\left(\sqrt{2}\,i+\sqrt{2}\right)\,\mathrm{erf} \left({{\left(\sqrt{2}\,i+\sqrt{2}\right)\,x}\over{2}}\right)+\left( \sqrt{2}\,i-\sqrt{2}\right)\,\mathrm{erf}\left({{\left(\sqrt{2}\,i-\sqrt{2}\right)\,x} \over{2}}\right)\right)}\over{8}}
A symplectic form on K \lambda is defined by the Kirillov-Kostant-Souriau formula
\omega_m(\xi_M(m),\zeta_M(m)) = (\Phi(m), [\xi,\zeta]).
e^{2\pi\mathrm{i}}=1
\frac{d}{x dx} = -\frac{1}{x^2}