| Size: 2215 Comment:  | Size: 3428 Comment:  | 
| Deletions are marked like this. | Additions are marked like this. | 
| Line 6: | Line 6: | 
| || {{http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Orbit1.svg/2000px-Orbit1.svg.png||width=300}} || The origin elliptical Kepler orbit has four parameters we need to compute two $ \Delta V $ burns for our transfer orbit: <<BR>><<BR>> * Apogee $ r_a $ <<BR>><<BR>> * Perigee $ r_p $ <<BR>><<BR>> * Inclination $ i $ <<BR>><<BR>> * argument of perigee $ \omega $ <<BR>><<BR>>We can compute the semimajor axis $ a $ and the eccentricity $ e $ from the apogee and perigee <<BR>><<BR>>The angle of the ascending and descending nodes do not affect the $ \Delta V $ burns, though they do affect when we make our burns so we insert into the desired destination region of the M288 orbit.<<BR>><<BR>>|| | || [[http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Orbit1.svg/2000px-Orbit1.svg.png|{{http://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Orbit1.svg/2000px-Orbit1.svg.png||width=300}}]] || The origin elliptical Kepler orbit has four parameters we need to compute two $ \Delta V $ burns for our transfer orbit: <<BR>><<BR>> * Apogee $ r_a $ <<BR>><<BR>> * Perigee $ r_p $ <<BR>><<BR>> * Inclination $ i $ <<BR>><<BR>> * argument of perigee $ \omega $ <<BR>><<BR>>We can compute the semimajor axis $ a $ and the eccentricity $ e $ from the apogee and perigee <<BR>><<BR>>The angle of the ascending and descending nodes do not affect the $ \Delta V $ burns, though they do affect when we make our burns so we insert into the desired destination region of the M288 orbit.<<BR>><<BR>>|| | 
| Line 12: | Line 12: | 
| || {{ attachment:orb01.png | |width=256 }} || Blue curve:<<BR>><<BR>>An orbit in the horizontal X,Y plane<<BR>><<BR>>apogee = apoapsis = 6<<BR>>perigee= periapsis = 2<<BR>>semimajor axis = 4<<BR>>eccentricity = 0.5 || || {{ attachment:orb02.png | |width=256 }} || Red curve:<<BR>><<BR>>A similar orbit with a 45 degree '''argument of perigee''' <<BR>><<BR>>(rotate around vertical Z axis): || || {{ attachment:orb04.png | |width=256 }} || Green curve:<<BR>><<BR>>A similar orbit with a 30 degree '''inclination''' <<BR>><<BR>>(rotate around horizontal X axis):<<BR>><<BR>><<BR>>note that the ascending and descending nodes, where the orbit crosses the equatorial plane, do not have the same radius from the origin|| | || [[ attachment:orb01.png |{{ attachment:orb01.png | |width=256 }}]] || Blue curve:<<BR>><<BR>>An orbit in the horizontal X,Y plane<<BR>><<BR>>apogee = apoapsis = 6<<BR>>perigee= periapsis = 2<<BR>>semimajor axis = 4<<BR>>eccentricity = 0.5 || || [[attachment:orb02.png |{{ attachment:orb02.png | |width=256 }}]] || Red curve:<<BR>><<BR>>A similar orbit with a 45 degree '''argument of perigee''' <<BR>><<BR>>(rotate by $ \omega $ around vertical Z axis): || || [[attachment:orb04.png |{{ attachment:orb04.png | |width=256 }}]] || Green curve:<<BR>><<BR>>A similar orbit with a 30 degree '''inclination''' <<BR>><<BR>>(rotate by $ i $ around horizontal X axis):<<BR>><<BR>><<BR>>note that the ascending and descending nodes, where the orbit crosses the equatorial plane, do not have the same radius from the origin|| | 
| Line 17: | Line 17: | 
| || $ \mu $ || earth gravitational constant || 3.986004418e14 m^3^/s^2^ || || $ T $ || sidereal orbital period (s) || $ { 2 \pi } \over \omega $ || || $ a $ || semimajor axis (m) || $ 0.5 ( r_a + r_p ) $ || $ \left( \mu \left( T \over { 2 \pi } \right)^2 \right)^{1/3} || || $ e $ || eccentricity (unitless) || $ { { r_a } \over { a } } ~-~ 1 $ || $ { { r_a - r_p } \over { r_a + r_[ } } $ || || $ r_p $ || perigee, periapsis (m) || $ a ( 1 - e ) $ || || $ r_a $ || apogee, apoapsis (m) || $ a ( 1 + e ) $ || || $ v_o $ || orbit velocity (m/s) || $ \sqrt{ \mu ( 1 - e^2 ) / a } $ || || $ v_p $ || perigee velocity (m/s) || $ ( 1 + e ) v_0 || || $ v_a $ || apogee velocity (m/s) || $ ( 1 - e ) v_0 || ||$\theta $|| true anomaly, orbit angle from perigee || || $ v_{\perp} $ || velocity perpendicular to radius || $ v_0 ( 1+e \cos( \theta )) $ || || $ v_{\perp} $ || velocity perpendicular to radius || $ v_0 ( 1+e \cos( \theta )) $ || || $ v_r $ || radial velocity || $ e v_0 \sin( \theta ) $ || | 
Changing Orbits to M288
How do we get from any arbitrary orbit to M288? The following techniques may not be optimal for minimal \Delta V , but they set an upper bound. We will assume Kepler orbits and a circular M288 destination orbit, and heavy objects unaffected by light pressure. Actual thinsat orbits are elliptical and precess over a year with J2 and light pressure.
|  The origin elliptical Kepler orbit has four parameters we need to compute two  \Delta V  burns for our transfer orbit:  | 
Maneuvers use the least \Delta V farther out, so we will use different strategies depending on whether the apogee of the origin orbit is higher or lower than the M288 orbit r_288 .
Describing an arbitrary Kepler Orbit
|  Blue curve: | |
|  Red curve: | |
|  Green curve: | 
gnuplot source and you will need to crop and convert and resize using gimp to reproduce the above images.
| \mu | earth gravitational constant | 3.986004418e14 m3/s2 | |
| T | sidereal orbital period (s) | { 2 \pi } \over \omega | |
| a | semimajor axis (m) | 0.5 ( r_a + r_p ) | $ \left( \mu \left( T \over { 2 \pi } \right)2 \right){1/3} | 
| e | eccentricity (unitless) | { { r_a } \over { a } } ~-~ 1 | { { r_a - r_p } \over { r_a + r_[ } } | 
| r_p | perigee, periapsis (m) | a ( 1 - e ) | |
| r_a | apogee, apoapsis (m) | a ( 1 + e ) | 
|| v_o || orbit velocity (m/s) || \sqrt{ \mu ( 1 - e^2 ) / a } ||
| v_p | perigee velocity (m/s) | $ ( 1 + e ) v_0 | 
| v_a | apogee velocity (m/s) | $ ( 1 - e ) v_0 | 
| \theta | true anomaly, orbit angle from perigee | |
| v_{\perp} | velocity perpendicular to radius | v_0 ( 1+e \cos( \theta )) | 
| v_{\perp} | velocity perpendicular to radius | v_0 ( 1+e \cos( \theta )) | 
| v_r | radial velocity | e v_0 \sin( \theta ) | 
MORE LATER




