Changing Orbits to M288
How do we get from any arbitrary orbit to M288? The following techniques may not be optimal for minimal \Delta V , but they set an upper bound. We will assume Kepler orbits and a circular M288 destination orbit, and heavy objects unaffected by light pressure. Actual thinsat orbits are elliptical and precess over a year with J2 and light pressure.
|  The origin elliptical Kepler orbit has four parameters we need to compute two  \Delta V  burns for our transfer orbit:  | 
Maneuvers use the least \Delta V farther out, so we will use different strategies depending on whether the apogee of the origin orbit is higher or lower than the M288 orbit r_288 .
Describing an arbitrary Kepler Orbit
|  Blue curve: | |
|  Red curve: | |
|  Green curve: | 
gnuplot source and you will need to crop and convert and resize using gimp to reproduce the above images.
| \mu | earth gravitational constant | 3.986004418e14 m3/s2 | |
| T | sidereal orbital period (s) | { 2 \pi } \over \omega | |
| a | semimajor axis (m) | 0.5 ( r_a + r_p ) | $ \left( \mu \left( T \over { 2 \pi } \right)2 \right){1/3} | 
| e | eccentricity (unitless) | { { r_a } \over { a } } ~-~ 1 | { { r_a - r_p } \over { r_a + r_[ } } | 
| r_p | perigee, periapsis (m) | a ( 1 - e ) | |
| r_a | apogee, apoapsis (m) | a ( 1 + e ) | |
| v_o | orbit velocity (m/s) | \sqrt{ \mu ( 1 - e^2 ) / a } | |
| v_p | perigee velocity (m/s) | ( 1 + e ) v_0 | |
| v_a | apogee velocity (m/s) | ( 1 - e ) v_0 | |
| \theta | true anomaly, orbit angle from perigee | radians or degrees | |
| r | radius (m) | a ( 1 - e^2 ) / ( 1 + e \cos( \theta ) ) | |
| v_{\perp} | velocity perpendicular to radius (m/s) | v_0 ( 1 + e \cos( \theta ) ) | |
| v_r | radial velocity (m/s) | e v_0 \sin( \theta ) | 
MORE LATER




