Processing Math: 41%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 12 and 13
Revision 12 as of 2014-05-20 19:40:13
Size: 1405
Comment:
Revision 13 as of 2014-05-20 20:52:22
Size: 1736
Comment:
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:
|| Thinsat arrays will not always be directly above the ground antenna, but will be at an elevation angle $ e $ above the horizon. If the array orbits at a radius $ A \bullet R_E $, what is the distance $ D \bullet R_E $ between the array and the ground antenna? Note that $ D = 1 $ when elevation angle $ e $ is $ \pi / 2 $ or 90&deg;. || {{ attachment:SatDistance.png | | width=200 }} || || Thinsat arrays will not always be directly above the ground antenna, but will be at an elevation angle $ e $ above the horizon. If the array orbits at a radius $ A \bullet R_E $, what is the distance $ D \bullet R_E $ between the array and the ground antenna? Note that $ D = 1 $ when elevation angle $ e $ is $ \pi / 2 $ or 90&deg;.<<BR>><<BR>>Signals between satellite and ground are attenuated by distance, though at 70 GHz attenuation due a longer slant path through the atmosphere is more important. For the M288 orbit, where A &approx; 2, $ D = \sqrt{ 3 } if $ e = 0 $, attenuating signals by 10 log 3 or 4.8 dB. The atmospheric attenuation is far greater. || {{ attachment:SatDistance.png | | width=200 }} ||

Satellite Distance

Thinsat arrays will not always be directly above the ground antenna, but will be at an elevation angle e above the horizon. If the array orbits at a radius ARE, what is the distance DRE between the array and the ground antenna? Note that D=1 when elevation angle e is 2  or 90°.

Signals between satellite and ground are attenuated by distance, though at 70 GHz attenuation due a longer slant path through the atmosphere is more important. For the M288 orbit, where A ≈ 2, D=3if  e = 0 $, attenuating signals by 10 log 3 or 4.8 dB. The atmospheric attenuation is far greater.

SatDistance.png

The sin law states that:

{ { sin( d ) } \over D } = { { sin( a ) } \over A } = { { sin( c ) } \over 1 }

sin( a ) = sin( e + { \pi \over 2 } ) = \cos( e )

sin( c ) = { { sin( a ) } \over A } = { { cos( e ) } \over A }

cos( c ) = \sqrt{ 1 - \left( { cos( e )^2 } \over A \right)^2 }

The sum of the corners of a triangle is \pi , so

\pi = a + c + d = e + { \pi \over 2 } + c + d \;\;\;\;\;\;\;\;\; { \pi \over 2 } = e + c + d \;\;\;\;\;\;\;\;\; d = { \pi \over 2 } - ( e + c )

sin( d ) = sin( { \pi \over 2 } - ( e + c ) ) \;\;\; = cos( e + c ) \;\;\; = cos( e ) cos( c ) - sin( e ) sin( c )

D = sin( d ) / sin( c ) \;\;\; = cos( e ) cos( c ) / ( cos( e ) / A ) - sin( e ) sin( c ) / sin( c ) \;\;\; = A cos( c ) - sin( e )

D = A \sqrt{ 1 - \left( { cos( e )^2 } \over A \right)^2 } - sin( e ) \;\;\; = \sqrt{ A^2 - cos( e )^2 } - sin( e )

D = \sqrt{ ( A^2 - 1 ) + sin( e )^2 } - sin( e )

SatDistance (last edited 2014-05-20 21:03:42 by KeithLofstrom)