Processing Math: 6%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Satellite Distance

Thinsat arrays will not always be directly above the ground antenna, but will be at an elevation angle e above the horizon. If the array orbits at a radius A \bullet R_E , what is the distance D \bullet R_E between the array and the ground antenna? Note that D = 1 when elevation angle e is \pi / 2 or 90°.

SatDistance.png

The sin law states that:

{ { sin( d ) } \over D } = { { sin( a ) } \over A } = { { sin( c ) } \over 1 }

sin( a ) = sin( e + { \pi \over 2 } ) = \cos( e )

sin( c ) = { { sin( a ) } \over A } = { { cos( e ) } \over A }

cos( c ) = \sqrt{ 1 - \left( { cos( e )^2 } \over A \right)^2 }

The sum of the corners of a triangle is \pi , so

\pi = a + c + d = e + { \pi \over 2 } + c + d . . . { \pi \over 2 } = e + c + d . . . d = { \pi \over 2 } - ( e + c )

sin( d ) = sin( { \pi \over 2 } - ( e + c ) ) = cos( e + c ) = cos( e ) cos( c ) - sin( e ) sin( c )

D = sin( d ) / sin( c ) = cos( e ) cos( c ) / ( cos( e ) / A ) - sin( e ) sin( c ) / sin( c ) = A cos( c ) - sin( e )

D = A \sqrt{ 1 - \left( { cos( e )^2 } \over A \right)^2 } - sin( e ) = \sqrt{ A^2 - cos( e )^2 } - sin( e )

D = \sqrt{ ( A^2 - 1 ) + sin( e )^2 } - sin( e )