Size: 4153
Comment:
|
← Revision 27 as of 2015-07-18 07:25:18 ⇥
Size: 6062
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 3: | Line 3: |
=== What is the optimum shape for a thinsat? === ------- Mass $M$, Density $M/A$ |
||<:-2>~+'''What is the optimum<<BR>>shape for a thinsat?'''+~<<BR>><<BR>><<BR>>Unlike the past 5 years of work,<<BR>>~+'''it is a square.'''+~<<BR>><<BR>>Square thinsats are easier to make.<<BR>><<BR>>With gently curved folds,<<BR>>thinsats are properly curved to <<BR>>diperse opposite-side signal and<<BR>>more stiffly resist vibration.<<BR>><<BR>>The depth of the curve should be<<BR>>gentle, one or two wavelengths.<<BR>><<BR>><<BR>><<BR>>Mass $M$<<BR>>Area $A$<<BR>>Density $M/A$||<:-3>{{attachment:SquareSat.png}}|| |
Line 9: | Line 6: |
|| Area ||<:-2> $ A = \sqrt{3} C^2 / 4 $ ||<:-2> $ A = Q^2 $ || | || Area ||<:-2> $ A = \sqrt{3} C^2 / 4 = B C / 2 $ ||<:-2> $ A = Q^2 $ || |
Line 11: | Line 8: |
|| Height ||<:-2> $ B = (\sqrt{3}/2) C = \sqrt{\sqrt{3} ~ A} $ ||<:-2> || | || Height ||<:-2> $ B = (\sqrt{3}/2) C = \sqrt{\sqrt{3} ~ A} $ ||<:-2> || |
Line 14: | Line 11: |
|| $ I ~~ $ Moment<<BR>>of Inertia|| $ { \Large { { 23 \sqrt{3} ~ M A } \over 486 } } ~\approx 0.081695 ~ M A $ || $ { \Large { { M A } \over { 6 \sqrt{3} } } } ~\approx 0.096225 ~ M A $ || $ $ || $ $ || || $ T ~ ~$ Torque || $ F \sqrt{\sqrt{3}~ A} / 6 ~\approx 0.21935 ~ F \sqrt{ A } $ || $ { \Large { { F \sqrt{A} } \over { 3 \sqrt[4]{3} } } } ~\approx 0.25328 ~ F \sqrt{A} $ || $ $ || $ $ || || $ \dot \omega ~~ $ Angular<<BR>> acceleration || $ { \Large { { 81 F } \over { 23 \sqrt[4]{3} ~ M \sqrt{A} } } } ~\approx 2.0333 { \Large { F \over { M \sqrt{A} } } } $ || $ { \Large { { 2 \sqrt[4]{3} ~ F } \over { M \sqrt{A} } } } ~\approx 2.6321 { \Large { F \over { M \sqrt{A} } } } $ || $ $ || $ $ || |
|| $ I ~~ $ Moment<<BR>>of Inertia|| $ { \Large { { 23 \sqrt{3} ~ M A } \over 486 } } ~\approx 0.081695 ~ M A $ || $ { \Large { { M A } \over { 6 \sqrt{3} } } } ~\approx 0.096225 ~ M A $ || $ {\Large { { M A } \over 12 } } ~\approx 0.083333 ~ M A $ || $ { \Large { { M A } \over 12 } } ~\approx 0.083333 ~ M A $ || || $ T ~ ~$ Torque || $ F \sqrt{\sqrt{3}~ A} / 6 ~\approx 0.21935 ~ F \sqrt{ A } $ || $ { \Large { { F \sqrt{A} } \over { 3 \sqrt[4]{3} } } } ~\approx 0.25328 ~ F \sqrt{A} $ || $ 0.25 ~ F \sqrt{A} $ || $ { \Large { { F \sqrt{A} } \over { 4 \sqrt{2} } } } ~\approx 0.17678 ~ F \sqrt{A} $ || || $ \dot \omega ~~ $ Angular<<BR>> acceleration || $ { \Large { { 81 F } \over { 23 \sqrt[4]{3} ~ M \sqrt{A} } } } ~\approx 2.0333 { \Large { F \over { M \sqrt{A} } } } $ || $ { \Large { { 2 \sqrt[4]{3} ~ F } \over { M \sqrt{A} } } } ~\approx 2.6321 { \Large { F \over { M \sqrt{A} } } } $ || $ 3.0 ~ { \Large { F \over { M \sqrt{ A } } } } $ || $ { \Large { { 3 ~ F } \over { \sqrt{2} M \sqrt{A} } } } ~\approx 2.1213 { \Large { F \over { M \sqrt{A} } } } $ || || $ \dot \omega ~~ $ Average ||<:-2> $ ~\approx 2.3327 { \Large { F \over { M \sqrt{A} } } } $ ||<:-2> $ ~\approx 2.5607 { \Large { F \over { M \sqrt{A} } } } $ || '''There is a 10% maneuvering advantage for the square, and certainly a manufacturing advantage. Time for a site redesign (sigh).''' |
Line 20: | Line 21: |
|| {{attachment:TriB.png| |width=160}} || symmetric! easier ... <<BR>> $ x = 2 y / C $ <<BR>> $ I ~= 2 \int_0^{C/2}(M/A)~B~(1 - 2y/C) y^2 ~ dy ~= { \large { { B C^3 M } \over { 4 A } } } \int_0^{1}~(1 - x) x^2 ~ dx ~= { \Large { { M A } \over { 6 \sqrt{3} } } } ~\approx 0.096225 ~ M A $ <<BR>> $ T ~= ( F / 3 )( C / 2 ) ~= { \Large { { F \sqrt{A} } \over { 3 \sqrt[4]{3} } } } ~\approx 0.25328 ~ F \sqrt{A} $ <<BR>> $ \dot \omega ~= T / I ~= { \Large { { 2 \sqrt[4]{3} ~ F } \over { M \sqrt{A} } } } ~\approx 2.6321 { \Large { F \over { M \sqrt{A} } } } $ || ||{{attachment:QuadA.png| |width=160}} || || ||{{attachment:QuadA.png| |width=160}} || || |
|| {{attachment:TriB.png| |width=160}} || symmetric! easier ... <<BR>><<BR>> $ x = 2 y / C $ <<BR>><<BR>> $ I ~= 2 \int_0^{C/2}(M/A)~B~(1 - 2y/C) y^2 ~ dy ~= { \Large { { B C^3 M } \over { 4 A } } } \int_0^{1}~(1 - x) x^2 ~ dx ~= { \Large { { M A } \over { 6 \sqrt{3} } } } ~\approx 0.096225 ~ M A $ <<BR>> $ T ~= ( F / 3 )( C / 2 ) ~= { \Large { { F \sqrt{A} } \over { 3 \sqrt[4]{3} } } } ~\approx 0.25328 ~ F \sqrt{A} $ <<BR>> $ \dot \omega ~= T / I ~= { \Large { { 2 \sqrt[4]{3} ~ F } \over { M \sqrt{A} } } } ~\approx 2.6321 { \Large { F \over { M \sqrt{A} } } } $ || ||{{attachment:QuadA.png| |width=160}} || $ I ~= 2 \int_0^{Q/2}(M Q / A) y^2 ~ dy ~= { \Large { { 2 ~ M Q^4 } \over { 24 ~ A } } } ~= { \Large { { M A } \over 12 } } ~\approx 0.083333 ~ M A $ <<BR>><<BR>> $ T ~= 2 ( F / 4 ) ( Q / 2 ) ~= 0.25 ~ F \sqrt{A} $ <<BR>><<BR>> $ \dot \omega ~= T / I ~= 3.0 ~ { \Large { F \over { M \sqrt{ A } } } } $ || ||{{attachment:QuadB.png| |width=160}} || $ x = \sqrt{2} ~ y / Q $ <<BR>><<BR>> $ I ~= 2 \int_0^{Q/\sqrt{2}}(M/A)~\sqrt{2}~Q~(1 - \sqrt{2} ~ y /Q) y^2 ~ dy ~= { \Large { { M Q^4 } \over A } } \int_0^{1}~(1 - x) x^2 ~ dx ~= { \Large { { M A } \over 12 } } ~\approx 0.083333 ~ M A $ <<BR>> $ T ~= ( F / 4 )( Q / \sqrt{2} ) ~= { \Large { { F \sqrt{A} } \over { 4 \sqrt{2} } } } ~\approx 0.17678 ~ F \sqrt{A} $ <<BR>> $ \dot \omega ~= T / I ~= { \Large { { 3 ~ F } \over { \sqrt{2} M \sqrt{A} } } } ~\approx 2.1213 { \Large { F \over { M \sqrt{A} } } } $ || |
Triangle or Square?
What is the optimum |
||||
|
Triangle |
Square |
||
|
|
|
||
Area |
A = \sqrt{3} C^2 / 4 = B C / 2 |
A = Q^2 |
||
Side |
C = 2 \sqrt{A / \sqrt{3} } |
Q = \sqrt{A} |
||
Height |
B = (\sqrt{3}/2) C = \sqrt{\sqrt{3} ~ A} |
|
||
Ratio |
C = ( 2 /\sqrt[4]{3} ) Q ~ \approx ~ 1.51967 ~ Q |
Q = ( \sqrt[4]{3}/2 ) C ~ \approx ~ 0.65804 ~ C |
||
Rotational |
||||
I ~~ Moment |
{ \Large { { 23 \sqrt{3} ~ M A } \over 486 } } ~\approx 0.081695 ~ M A |
{ \Large { { M A } \over { 6 \sqrt{3} } } } ~\approx 0.096225 ~ M A |
{\Large { { M A } \over 12 } } ~\approx 0.083333 ~ M A |
{ \Large { { M A } \over 12 } } ~\approx 0.083333 ~ M A |
T ~ ~ Torque |
F \sqrt{\sqrt{3}~ A} / 6 ~\approx 0.21935 ~ F \sqrt{ A } |
{ \Large { { F \sqrt{A} } \over { 3 \sqrt[4]{3} } } } ~\approx 0.25328 ~ F \sqrt{A} |
0.25 ~ F \sqrt{A} |
{ \Large { { F \sqrt{A} } \over { 4 \sqrt{2} } } } ~\approx 0.17678 ~ F \sqrt{A} |
\dot \omega ~~ Angular |
{ \Large { { 81 F } \over { 23 \sqrt[4]{3} ~ M \sqrt{A} } } } ~\approx 2.0333 { \Large { F \over { M \sqrt{A} } } } |
{ \Large { { 2 \sqrt[4]{3} ~ F } \over { M \sqrt{A} } } } ~\approx 2.6321 { \Large { F \over { M \sqrt{A} } } } |
3.0 ~ { \Large { F \over { M \sqrt{ A } } } } |
{ \Large { { 3 ~ F } \over { \sqrt{2} M \sqrt{A} } } } ~\approx 2.1213 { \Large { F \over { M \sqrt{A} } } } |
\dot \omega ~~ Average |
~\approx 2.3327 { \Large { F \over { M \sqrt{A} } } } |
~\approx 2.5607 { \Large { F \over { M \sqrt{A} } } } |
There is a 10% maneuvering advantage for the square, and certainly a manufacturing advantage. Time for a site redesign (sigh).
Notes: |
The mass density per area is total mass M divided by the total area A for a thinsat. |
|
x = 3 y / B |
|
symmetric! easier ... |
|
I ~= 2 \int_0^{Q/2}(M Q / A) y^2 ~ dy ~= { \Large { { 2 ~ M Q^4 } \over { 24 ~ A } } } ~= { \Large { { M A } \over 12 } } ~\approx 0.083333 ~ M A |
|
x = \sqrt{2} ~ y / Q |