Characteristics of typical radiation belt charged particles
The following table appears in [1][2][3] . The gyration numbers seem to be incorrect for the 500km altitude. Depending on the magnetic latitude and pitch angle of these "typical particles", the table values for the gyration period are between 2.3 and 5.0 too large, as if the B field is 3x too small or the altitude is 2800 km instead of 500km . This does not even occur over the south Atlantic anomaly, which brings the lower field down only 500km or so.

Particle 

1 MeV 
10 MeV 

electron 
proton 

Range in aluminium (mm) 
2 
0.4 
Peak equatorial omnidirectional flux (cm^{2} s^{1}) 
4E6 
3.4E5 
Radial location (L) of peak flux (Earthradii) 
4.4 
1.7 
Radius of gyration (km) 

500 km 
0.6 
50 
20000 km 
10 
880 
Gyration period (s) 

500 km 
1E5 
7E3 
20000 km 
2E4 
0.13 
Bounce period (s) 

500 km 
0.1 
0.65 
20000 km 
0.3 
1.7 
Longitudinal drift period (min) 

500 km 
10 
3 
20000 km 
3.5 
1.1 
Constants:
Magnetic field constant 
Tesla 
3.0037E05 
B_{0} 
Unit charge 
Colombs 
1.6021E19 
q 
Joules per MeV 
J/MeV 
1.6021E13 

Earth radius 
m 
6378210.00 
R_{E} 
Speed of Light 
m/s 
2.9979E+08 
c 
Let's compute some numbers at 500km altitude:
ratio 

1.078 
ratio = 1 + alt/R_{E} 

L @ 0 degrees magnetic latitude 

1.078 
L=ratio 

L @ 90 degrees magnetic latitude 

infinite 

B @ 0 degrees magnetic latitude 
Tesla 
2.40E05 
B_{lat0}=B_{0}/ratio^{3} . . . * sqrt( 43 ratio/L ) 

B @ 90 degrees magnetic latitude 
Tesla 
4.79E05 
B_{lat90}=2B_{0}/ratio^{3} . . . * sqrt( 43 ratio/inf ) 


Particle 

electron 
proton 

Kinetic Energy 
MeV 
1 
10 

Kinetic Energy 
J 
1.6021E13 
1.6021E12 
E_{k} 
Rest Mass 
kg 
9.1094E31 
1.6726E27 
m_{0} 
Mass Energy 
J 
8.1871E14 
1.5033E10 
E_{0}=m_{0}c^{2} 
Relativistic Momentum 
kg m/s 
7.60E22 
7.34E20 
p=sqrt( 2E_{0}E_{k}+E_{k}^{2})/c 
Lorentz Factor 

2.957 
1.0107 
gamma=1/sqrt(1(v/c)^{2}) 
Velocity 
m/s 
2.82E+08 
4.34E+07 
v=pc^{2}/(E_{k}+E_{0}) 
"Relativistic Mass" 
kg 
2.69E30 
1.69E27 
m_{r}=m_{0} gamma 
Gyration Period/Field 
Ts 
1.06E10 
6.63E08 
2pi m_{r} / q 
Gyration Period @ 0 degrees 
s 
4.41E06 
2.77E03 
Period = 2pi m_{r} / q B_{lat0} 
Gyration Period @ 90 degrees 
s 
2.21E06 
1.39E03 
Period = 2pi m_{r} / q B_{lat90} 
Gyration Period from table 
s 
_1E5_ 
_7E3_ 
10000nT, 2800km altitude B_{lat0}??? 
Calculations based on the equations in Pisacane [3] and the equations for relativistic momentum and energy scattered around Wikipedia.
Without the pitch angle and the L value (or the magnetic latitude), I can't guess at the bounce period (there are values that yield the above results). Plausible values of pitch angle yield gyration radii that are larger than those for 500km in the table.
The 20000km numbers ( the altitude of most navsats ) are plausible.
What am I missing here?
References:
[1] ECSSE1004A, 21 January 2000, Table 28, page 94